
AN INTRODUCTION TO PYTHON
Ari Maller

PYTHON IS A HIGH LEVEL PROGRAMMING AND SCRIPTING LANGUAGE

➤ Python was designed to be easily understood - straightforward
syntax.

➤ Python is not compiled. It can be run interactively, which is very
useful for debugging.

➤ In spite of this Python need not be slow because routines can be
written in C (Cython) and have good performance.

➤ Pythons true strength comes from the many thousands of
packages that can be imported adding high level functionality.

➤ Python unlike other high level languages (MatLab, Mathematica,
Maple, IDL, etc.) is free and runs on all operating systems.

INSTALLING PYTHON

➤ The super easy way to install Python is to install Anaconda
Python (https://www.continuum.io/downloads) for any OS.

➤ You can chose to do a full installation which includes 1000+
useful packages or you can do a mini-conda installation which
only installs python and conda and then install any packages
you want later.

➤ conda is a package management system that can be used to
update python and the packages associated with it

➤ you can also use pip to install and update packages

➤ install python 3

https://www.continuum.io/downloads

TOOLS
➤ Terminal

➤ Text Editors

➤ IDEs

➤ Notebooks

TERMINAL
➤ Originally a computer only showed text on a terminal. The user could

only enter text on one line called the command line.

➤ While those days are long ago, many programmers still use a terminal to
interface with the computer because it tends to be faster and have more
control then a graphical interface.

➤ All OS have a built in program that emulates a terminal. You can also
install other terminal programs with extra features.

➤ While you do not need to use a terminal ever, understanding how to do
things on the command line can be very helpful, especially if you connect
to a computer remotely.

➤ WINDOWS - You must use the Anaconda Terminal for your anaconda
python to work.

➤ MAC OSX- Terminal, alternative iTerm2

TEXT EDITOR
➤ Code is written in text, so to write code you must have a text editor.

Vim and Emacs are text editors that work in the terminal and thus
can be useful to have used at some point.

➤ There are many text editors: Notepad++, Emacs, Vim, Atom,
Sublime Text, TextWrangler, UltraEdit, Visual Studio Code.

➤ Syntax Highlighting: This feature means the editor can recognize the
type of text you want to write (e.g. python code) and perform color
changes and formatting that helps make your code more readable.

➤ NOTE: Word processors (MS Word, Google Docs) are not text
editors. They add a bunch of special characters to have features like
bold and italics and these will mess up your code. You can not code
in them.

INTEGRATED DEVELOPMENT ENVIRONMENT
➤ An IDE combines a text editor and a command line and

usually a debugger to create one program with all of your
development needs.

➤ An IDE may only work on one language unlike a text editor
which can edit code for any language.

➤ Some popular ones for Python: Spyder, PyCharm, Rodeo,
Atom, Visual Studio (Windows), Xcode (Mac OSX)

➤ https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

➤ The distinguish between a IDE and a text editor can be
blurred. Many editors can be enhanced with extra packages
that make them behave like IDEs

https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

NOTEBOOKS
➤ The final layer of integrating your environment is called a

notebook. A notebook not only allows you to write and run
code, but also saves all the things that happened when you ran
the code.

➤ Notebooks are very good when first starting a language. Once
you know what you are doing you may find them to be overkill.

➤ The standard notebook for Python is the Jupyter Notebook.

➤ conda install jupyter or pip install jupyter or already
installed if you downloaded Anaconda Python.

➤ Jupyter Lab is the newer more featured interface for
Notebooks.

JUPYTER NOTEBOOK
➤ To start the jupyter notebook enter jupyter notebook on the

command line or select it from the anaconda navigator.

➤ This should start a notebook in a web browser. It will also
give you a url that you can paste in a browser.

➤ The notebook will start with a view of your files. You can
load an existing notebook or start a new one with buttons on
the left side of the page.

➤ The notebook basically contains cells where you can enter
Python code. It also will display images and what you print to
standard output.

JUPYTER NOTEBOOK/LAB
➤ The notebook has some extra features compared to normal

python code, which is nice, but important to distinguish.

➤ Most importantly you can run any number of lines in a cell and
the results are saved into memory. You can then use those
results in later cells. Outside of a notebook one generally runs
all the lines of code you have at one time.

➤ The notebook can also capture plots you make, IDEs can also do
this, but other ways of running code will open a new window.

➤ There are some magic commands in the notebook, they start
with %. These are notebook features and not in standard
python. Using ! in the beginning of a cell is like using a
terminal.

INTRODUCTION TO PYTHON
➤ variables

➤ operators

➤ logic

➤ control blocks

➤ sequences

➤ loops

➤ dictionaries

➤ functions

➤ classes

DYNAMIC VARIABLES

➤ Variables are not declared, memory is allocated when assigned.

➤ Types of variables:

➤ Boolean: x=True

➤ Integers: x=3

➤ Floats: x=3.1415 or x=3.e12

➤ Complex: x=3+5j

➤ The type of variable is determined by the value assigned. The same
variable’s type will change if assigned a different ‘type’ of value.

➤ The functions int(), float() and complex() will also set the type. These is
called casting.

➤ The function type() will tell you the variable type, very useful for debugging.

BASIC ARITHMETIC
➤ x+y addition

➤ x-y subtraction

➤ x*y multiplication

➤ x/y division

➤ x**y exponentiation, raising x to the power y

➤ x//y integer division, the number of times y goes into x no fraction

➤ x%y modulo, the remainder when x is dived by y

➤ Parenthesis can be used and are very helpful for complex arithmetic

x = (5.0*y+28)**2 + 1

➤ Note you need the * symbol between numbers and variables.

EXERCISE 1
➤ Use the quadratic

equation to solve
25x2-35x-15=0

➤ Then solve 5x2+3x-90=0

<latexit sha1_base64="TnAKVx44jAU7mk/kbbgt/4Z0gXg=">AAACEXicdVDLSgMxFM34tr6qLt1cLIIby2QofSyEohuXCtYKnVoyacaGZh4mGbEM8wtu/BU3LhRx686df2OmVlDRA4HDOfdwc48XC660bb9bU9Mzs3PzC4uFpeWV1bXi+saZihJJWYtGIpLnHlFM8JC1NNeCnceSkcATrO0ND3O/fc2k4lF4qkcx6wbkMuQ+p0QbqVfcvYF9SPc8cOMAXHUldepdOLAHFUIzcCOThdQhWdYrluyybdsYY8gJrlVtQxqNuoPrgHPLoIQmOO4V39x+RJOAhZoKolQH27HupkRqTgXLCm6iWEzokFyyjqEhCZjqpuOLMtgxSh/8SJoXahir3xMpCZQaBZ6ZDIgeqN9eLv7ldRLt17spD+NEs5B+LvITATqCvB7oc8moFiNDCJXc/BXogEhCtSmxYEr4uhT+J2dOGVfLlZNKqXkwqWMBbaFttIswqqEmOkLHqIUoukX36BE9WXfWg/VsvXyOTlmTzCb6Aev1A8G1m8c=</latexit>

x =
�b±

p
b2 � 4ac

2a

LOGIC
➤ Python has the following logical comparison operators.

x==2 returns True if x=2, notice = is assign, == logic test

x > 2 returns True if x greater than 2

x >=2 returns True if x greater than or equal to 2

x< 2 returns True if x less than 2

x <=2 returns True if x less than or equal to2

x!=2 returns True if x not equal to 2

➤ Python also has the operators; and, or and not to create syntax like

x > 2 and x < 4 or x==8 or not x > 5

➤ In addition Python has is which is slightly different than ==.

x is None

➤ The difference between is and == is that == evaluates if two things have the same value, is checks if it is the same
address in memory. So

x=4

x is 4

will return False. You should use is for None, True and False checks only.

if x:

checks if x is set to a nonzero value, this can be unclear if not set to True or False.

CONTROL BLOCKS
➤ In Python control blocks are created by a statement ending with a colon and then all text

that is intended is in that block.

if (x==4):

 print(“x is equal to four”)

elif(x==5): #else if

 print(“x is equal to five”)

else:

 print(“x is not equal to four or five”)

➤ Comments are made with the # symbol. Any text after a # is ignored.

➤ Long comments can also be made with the triple quote ‘’’ though this supposed to be for
docstrings.

EXERCISE 2
➤ Write a program to test if a

variable is positive, negative or
zero.

WHILE
➤ Instead of checking a condition just once we can keep checking using a while loop.

x=0

while(x<5):

 print(x)

 x=x+1

print(“Got to x=4”)

or

while True:

 print (x)

 x=x+1

 if (x==4):

break

print(“Got to x=4”)

SEQUENCES (STRINGS AND LISTS)

➤ Often we may have a whole bunch of numbers or things we
would like to do something with. The most obvious example
of this are words, a sequence of characters. These use the
string type in Python.

➤ A more general type of sequence is a list, which does not need
to be characters but can be anything stored in memory. Lists
are created with square brackets, [].

➤ You can get the elements in a sequence using indices and the
square brackets.

STRINGS

➤ Strings are an example of a sequence and are set using
quotation marks.

➤ x=‘Hello’ or x=“Goodbye”

➤ x=“1.0” is also a string not a float. x+1.0 will give an error
since it is not clear what you want to do. Same as if you tried
“Hello”+1.0.

➤ You can convert a string to a variable with the int(),float() or
complex() commands.

➤ You can access the elements in a string; if x=‘Hello’ then
x[0]=‘H’ and x[2]=‘l’ and x[1:4] = ‘ell’

LISTS
➤ Lists can be sequences of anything, including other lists.

shopping = [‘eggs','beer','milk']

numbers = [1,2,3,4,5]

stuff = [1,2.e-2,'four',[0,1]] #a list can contain another list

➤ Sequences can be sliced, that means have certain elements
returned

odd=numbers[0:5:2] #[start,stop,step] step defaults to 1

drinks = shopping[1:] #start defaults to 0, stop to last value

shopping[1] = ‘wine’ #lists can be changed

shopping = shopping + [‘cheese’] #and added to

FOR LOOP
➤ One of the main uses of sequences is that they can be iterated over.

In Python iteration is favored over indexing. So a for loop might look
like

list=[1,2,3,4,5]

for num in list:

print(np.sqrt(num))

names=[“Bob”,”Sally”,”Vicky”]

for name in names:

 print(“Hello ”+name)

FOR LOOP TRICKS
➤ create list of integers to loop over

for i in range(len(array)): #len() returns length of a list or array

➤ add integers to a list and loop over both

for i,name in enumerate(names):

➤ combine two lists and iterate over both

for thing,name in zip(things,names):

➤ single line for loops (called a list comprehension)

doubled = [num*2 for num in array]

evendouble=[num*2 for num in array if num%2=0]

EXERCISE 3
➤ Write a loop that prints the

odd numbers up to 20

DICTIONARIES
➤ A dictionary is a pairing between values and keys. You give

the dictionary the key and it returns the value. This data type
is not often used in beginning programming, but it can be
very useful.

astro_type={'star':1,'planet':2,'galaxy':3,'black hole':4}

print(astro_type['star'])

print(astro_type['black hole’])

DICTIONARIES
➤ One good use of dictionaries is to replace long if/else blocks.

if object==‘star’:
stars=stars+1

elif object==‘galaxy’:
gals=gals+1

elif object==‘planet’:
planets=planets+1

else:
unknown=unknown+1

➤ this can be replaced with a dictionary and a list
obj_type=[0,0,0,0] #star,galaxy,planet,unkown
obj_dict={‘star’:0,’galaxy:1,’planet’:2,’unknown’:3}
obj_type[obj_dict[object]]=obj_type[obj_dict[object]]+1

FUNCTIONS
➤ A function is some code that can operate on some inputs and can return some

outputs. We have already used many functions; print(), range(), int(), type(),
enumerate(). You'll notice all functions have parenthesis at the end in which you can
pass variables to be used by the function. We will now define our own functions.

➤ To define your own functions in Python you use the def syntax.

def factorial(n):

 f=1.0

 for k in range(1,n+1):

 f*=k # *=,+=, are shorthand for f=f*k, f=f+k

 return f

➤ Like in a control block, indention determines when your function ends.

➤ Functions must be defined before they are used.

ARGUMENTS
➤ Functions have two main types of arguments, positional arguments and keyword

arguments. As the names imply, positional arguments are set by position, while keyword
arguments are set by keyword. Also, you must have the same number of positional
arguments as defined in the function, but keyword arguments can be omitted.

➤ To pass information to your function you can use positional arguments,

def factorial(n):

➤ this passes one argument that will be called n in your function. If you don’t pass a value
this will give an error. You can have any number of arguments passed including 0

def nada():

def cool_function(n1,n2,n3):

➤ These arguments are called positional because they are assigned in the order you pass
them.

cool_function(3,5,7):

➤ will assign n1=3, n2=5 and n3=7. Note it doesn’t matter at all what the names of the
variables are, only their order.

KEYWORD ARGUMENTS
➤ you can also have keyword arguments that don’t need to be, but can be

passed

def sphere2cartesian(R, theta, phi, degrees=False)

 if degrees:

 deg2rad=np.pi/180.

 R=deg2rad*R; theta=deg2rad*theta; phi=deg2rad*phi

x=R*np.cos(theta)*np.sin(phi)

y=R*np.sin(theta)*np.sin(phi)

z=R*np.cos(phi)

return x,y,z

x,y,z=sphere2cartesian(100., 45., 30., degrees=True)

UNSPECIFIED ARGUMENTS
➤ You can also pass unspecified variables and keyword

arguments to a function. This is done using the *args and
*kwargs terms. These are less clear and should only be used
when necessary.

def myfunc(*args,**kwargs):

for arg in args:

 print(arg)

plt.plot(x,y,**kwargs)

RETURN
➤ Your function can return information to the code that calls it using the return statement

def seven():
a=7

 return a
➤ You can return any number of values of any data type or nothing at all.

return a, b, c, d

➤ When your code hits return it exits the function so it will not execute any lines below the return statement

def seven(n):

 return 7

 print(“this line will never be printed”)

➤ If you want your function to return values to a variable you need to use the =

v=seven()

➤ assigns the value of 7 to the variable v. For multiple variables assign to a list or multiple vars

a,b,c,d = my_function(7,8,9,10)

list = my_function(7,8,9,10)

➤ an error will be raised if the number of things returned does not equal the number of assignments.

EXERCISE 4
➤ Write a function that given the

height of a ball determines the
time it takes to hit the ground.
h = 1/2 g t2. Allow g to be a
keyword so you can use this
code on other planets.

CLASSES
➤ Everything in python is actually a class. But you shouldn't worry too much

about classes or object oriented programming when you are just getting
started. However, understanding a bit about classes can help you understand
how to use python. The main idea of object oriented programming is that data
and functions should be combined together. A function that is in a class is
called a method. Since everything in python is a class, each data type we have
seen is a class. We can see the methods of the class with the dir() function.

x = 6.5

dir(x)

➤ methods with the __name__ format are internal and not meant to be used. So
we see for floats we have methods like as_integer_ratio() and is_integer(). We
can use these methods on our float

print(x.as_integer_ratio())

print(x.is_integer())

METHODS FOR LISTS
➤ Most of the methods on variables are not that interesting, but for

list and strings they can be very useful. For lists we have methods
like, append(), insert(), pop() and remove() which allow us to
modify our list.

x=[] #create an empty list

x.append(1) #append adds a value to your list

x.append(2)

x.append(1)

x.insert(1,’new') #insert places a value into the list

y = x.pop(2) # pop gets the value and removes it from the list

x.remove(3) #remove just removes it

METHODS FOR STRINGS
➤ Strings also have a bunch of useful methods attached to them

like find(), rfind() and split().

x='Hello World’

a=x.find('W')

b=x.rfind('d')+1

print(x[a:b]) # prints World

print(x.split()) # returns [‘Hello’,’World’]

print(x.swapcase()) # returns ‘hELLO wORLD’

WRITING CLASSES
➤ Writing a class isn't all that complicated. One just creates a class and then defines your methods inside of that class. There is the special name self that

refers to an instance of the class and some special methods like __init__which runs when you create an instance of the class. In general, 2 underscores
before and after a name in python are used for special types of function of variable name being used internally. Here is an example of how to code a
class.

class Student:

 def __init__(self, name, grade, major): #__init__ is a special name

 #that will be run when creating an instance of the class

 self.name = name

 self.grade = grade #self is the instance of the class

 self.major = major

 def passing(self):

 if self.grade=='A' or self.grade=='B' or self.grade=='C':

 return True

 elif self.grade=='D' and self.major=='English':

 return True

 else:

 return False

student1=Student(‘Jill','A','English') #this is an instance of the class

student2=Student(‘Beth','F','Biology') #this is another one

print(student1.name,student1.grade)

print(student1.passing(),student2.passing())

PACKAGES AND MODULES
➤ Python has relatively few built in functions and data types. Its functionality is greatly

increased by a packages developed by individuals. There are a few ways to bring functions and
classes from a package into your program

from numpy import exp,log adds the functions exp() and log()

from numpy import * adds all functions from numpy

import numpy adds all functions, callable as numpy.exp()

import numpy as np adds all functions, callable as np.exp()

➤ I strongly discourage the first two because they make it less clear where the functions came
from. Also you can import two functions with the same name. Note you can also import a
submodule like,

import scipy.optimize as opt

➤ The built in functions dir() and help() can be very useful with modules. dir() with no
arguments returns all currently available functions, dir(module or variable) returns all
functions or methods associated with that module or variable. help() returns helpful
information (as written by the coder) about the module or variable.

PACKAGE MANAGEMENT
➤ The thousands of packages

available in Python are the
languages greatest strength.

➤ However, it can be very hard
to keep track of them and
people constantly update them
so they don’t stay constant.

➤ A package management
system is code that helps you
with this, conda and pip are
package management systems.

CONDA
➤ Conda is a way to add and manage the packages in your python

distribution. Some useful commands

conda list [name]

➤ lists the package name if installed [or all packages installed]

conda search name

➤ searches for packages with this name

conda install name

➤ installs the package name

conda update name

➤ updates the package name

CHANNELS
➤ The anaconda team maintains the default channel for your conda installation.

However, you may find that you want some package that is not included in the
default installation.

➤ There are other channels that you can use to find packages, the most common
alternative to default is conda-forge. This channel tries to get updates out faster
and new packages into the channel quicker.

➤ To search or install a package from a different channel use -c conda-forge after
the command.

➤ If you only install a few packages from a different channel you will probably be
all right, but the more you do the more likely this will cause problems. If you
really want to use conda-forge you set it as your default channel. If you do that
also set your channel_priority to strict.

conda config --add channels conda-forge

conda config --set channel_priority strict

PIP
➤ An alternative package manager is pip. Pip is only for python

and has a somewhat larger selection of packages. However,
pip doesn’t know about conda while conda knows about pip.
So I tend to try conda first and then use pip if conda doesn’t
work.

➤ Pip has similar commands but slightly different

pip freeze
pip search name
pip install name
pip install —upgrade name

PYTHON SCRIPTS
➤ Often it is useful to be able to

run your code from the
command line.

➤ This is why python is called a
scripting language, because one
can run lines of code without
having to open an IDE or
notebook.

➤ Any code that you run from the
command line could already be a
python script.

➤ Our goal here is to have our
code run if we type python
mycode.py

PYTHON SCRIPTS
➤ There are two ways to run Python as a script. One is to run Python and then pass the

script as an argument

python my_script.py

➤ The second is to just type the script file’s name if it is in your PATH and is executable.

./my_script.py

➤ The .py extension is not necessary, both of the above cases can work without it. The
extension lets the OS know what type of file you have and the OS can do certain things
like invoke the Python interpreter or use syntax highlighting based on that. Also it lets
others know your file is Python code.

➤ You should also include the following as the first line in your code

!# /usr/bin/env python or !# /usr/bin/python

➤ this also tells the shell the file is Python. If you use the .py extension it is not really
needed, though you can use it to specify what version of Python. It is mostly historic,
but also tells a reader that the file will be Python code and is being thought of as a script.

EXECUTABLE
➤ To make a file executable in Linux or OS X do

chmod +x myfile

➤ In Windows the .py extension will tell the OS that you want the file
to be executable.

➤ With Linux/OS X if you want a whole directory of files to be easily
executable you can add the directory to your path. How to do this
depends on the shell you are using, which will usually be Bash.
Changing your path will be something like

export PATH=“/Users/me/bin:$PATH"

➤ make sure you include everything that was already in your old PATH,
otherwise all commands you are used to running will no longer
work.

IS __MAIN__
➤ For Python scripts it is nice to add a check that you are actually

trying to run this code as a script and not for example in a notebook.

➤ This can be done with the following line of code

if __name__==“__main__”:

 main()

➤ This checks that the code is being run from the command line, in
which case __name__ will be set to __main__. So if that is true if will
execute what follows, but if not then it won’t.

➤ The main point of this is if you have some functions you define in
your file, you might want to import them into some other file, or into
a interactive session, but not run the program. This check allows that
to happen.

SYS.ARGV
➤ Next step, we want to run our program, but we also want to

be able to change some options.

➤ One way to do this is with the input function that allows the
code to ask for an input.

➤ Another way to do this is to pass options on the command
line like other command line programs.

➤ Anything you type in the command line after your file name is
saved as a string which can be accessed with the sys package
as sys.argv.

➤ However a package exists to help you parse that string which
can be much easier to use if you have complicated options.

ARGPARSE
➤ The argparse package works like this:

➤ First you have to create a parser

➤ Then you add arguments to it

➤ Finally you call the parse_args() function and it returns your
arguments.

➤ One of the key reasons to use argparse is that you should give
a line of explanation for each argument that will be printed to
the screen if there is something wrong with what you type on
the command line.

➤ Argparse has a lot of options, we will start with just the basics.

ARGPARSE
import argparse

parser = argparse.ArgumentParser(description="Do Something.”)

parser.add_argument(‘h’, type=float, help=‘height of object above ground’)

parser.add_argument(’N’,type=int, help=‘Number of bins for integrating’)

parser.add_argument(“—simp”,default=False, help='Use Simpson’s Rule’,

 action= "store_true")

args=parser.parse_args()

print(args.h, args.N, args.simp)

➤ If the name of this file was test.py I could then type python test.py 30.0 100
and then it would print, 30.0 100 False

VERSION CONTROL
➤ A way to keep track of changes

to your code.

➤ Also a way to collaborate on
writing code with others.

➤ Many implementations though
git is becoming the most
common one.

➤ Also can be combined with a
website to allow easy access to
others, even people you don’t
know.

➤ Widely used in open source
programming.

VERSION CONTROL
➤ Someday you will spend a long amount of time writing a fairly

large and complicated code. When it runs and all the bugs
have been worked out you will be very happy.

➤ Then you will want to make some minor revisions to your
code, but after you do your code will no longer work.

➤ Not being able to figure out exactly what changes you made to
the formally working version you will get very frustrated and
wish you had saved a copy of the version that worked.

➤ THIS IS WHY WE USE VERSION CONTROL!

VERSION CONTROL
➤ The basic idea of version control is that your files are kept in

what is called a repository.

➤ However, you do not edit the files in the repository. Instead
you check out a copy of them for you to work on.

➤ When you are done working on the files you commit them
back to the repository.

➤ The version control software keeps track of each of these
changes and allows you to check out an older copy if you want.

➤ It is also possible to create branches, where you change
different things, or different people change different things and
then merge them back at some later time.

Repository

clone

local copy 2nd branch

commit

branch

commit

GIT
➤ The most popular version control system is probably git, and

that has a lot to do with GitHub a website that freely hosts
your files as long as they are open source.

➤ git can be installed from a package management system (like
conda) or with a GUI. Here is one possible choice: https://git-
scm.com/book/en/v2/Getting-Started-Installing-Git

➤ You can either use the command line or a GUI, they do the
same things. You should at least practice on the command
line so you understand what the GUI is doing.

➤ Installing Anaconda Python should have installed git.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

GIT WORKFLOW
➤ git init - create an new repository / or create a repository on

GitHub using the web interface.

➤ git clone <repo url> - make a local copy of the repository

➤ git add <filename> - adds file or updates file to local copy

➤ git commit - updates changes to the repository

➤ git push - uploads changes to remote repository

➤ Then when you want to checkout the updated version of the
repo you just need to use

➤ git pull

git clean -n Shows which !les would be removed from working directory. Use
the -f "ag in place of the -n "ag to execute the clean.

Push the branch to <remote>, along with necessary commits and
objects. Creates named branch in the remote repo if it doesn’t exist.

git push
<remote> <branch>

git reset <file> Remove <file> from the staging area, but leave the working directory
unchanged. This unstages a !le without overwriting any changes.

git pull <remote> Fetch the speci!ed remote’s copy of current branch and immediately
merge it into the local copy.

git revert
<commit>

Create new commit that undoes all of the changes made in
<commit>, then apply it to the current branch.

git fetch
<remote> <branch>

Fetches a speci!c <branch>, from the repo. Leave o# <branch> to
fetch all remote refs.

git remote add
<name> <url>

Create a new connection to a remote repo. After adding a remote,
you can use <name> as a shortcut for <url> in other commands.Undoing Changes

git diff Show unstaged changes between your index and working directory. Remote Repositories

git commit -m
"<message>"

Commit the staged snapshot, but instead of launching a text editor,
use <message> as the commit message.

git status List which !les are staged, unstaged, and untracked.

git log Display the entire commit history using the default format.
For customization see additional options.

git branch List all of the branches in your repo. Add a <branch> argument to
create a new branch with the name <branch>.

git checkout -b
<branch>

Create and check out a new branch named <branch>. Drop the -b
"ag to checkout an existing branch.

git merge <branch> Merge <branch> into the current branch.

Git Branchesgit add
<directory>

Stage all changes in <directory> for the next commit.
Replace <directory> with a <file> to change a speci!c !le.

git clone <repo>

git config
user.name <name>

De!ne author name to be used for all commits in current repo. Devs
commonly use --global "ag to set con!g options for current user.

git rebase <base>

git reflog Show a log of changes to the local repository’s HEAD. Add
--relative-date "ag to show date info or --all to show all refs.

Clone repo located at <repo> onto local machine. Original repo can be
located on the local !lesystem or on a remote machine via HTTP or SSH.

git init
<directory>

Create empty Git repo in speci!ed directory. Run with no arguments
to initialize the current directory as a git repository.

git commit
--amend

Replace the last commit with the staged changes and last commit
combined. Use with nothing staged to edit the last commit’s message.

Rebase the current branch onto <base>. <base> can be a commit ID,
a branch name, a tag, or a relative reference to HEAD.

Git Basics Rewriting Git History

Git Cheat Sheet

Visit atlassian.com/git for more information, training, and tutorials

