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➤ There are two main considerations for most computer 
algorithms which are often in tension with each other; 
accuracy and speed. 

➤ Accuracy refers to the how close the computed number is to 
what one would get analytically when possible or compared to 
a more accurate calculation if possible. 

➤ Speed refers to the time (or CPU time) it takes to perform the 
calculation.  

➤ Usually accuracy and speed are in conflict in that you could 
perform a more accurate calculation but it would take longer 
and you can get a faster calculation but it is less accurate.



MACHINE PRECISION
➤ Floats are stored on a computer using a fixed number of bits. 

➤ Single precision: 

➤ Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits 

➤ Range: 27 -1 in exponent (because of sign) = 2127 multiplier ~ 1038  

➤ Decimal precision: ~6 significant digits 

➤ Double precision:  

➤ Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits 

➤ Range: 210-1 in exponent = 21023 multiplier ~ 10308 

➤ Decimal precision: ~15 significant digits



EXERCISE
➤ Find the machine precision of 

your computer. 

x=1.0 

eps=1.0 

while not x+eps==x: 

        eps=0.5*eps 

print(2*eps) 

➤ This code will stop when 
adding eps to x doesn’t change 
the value of x.



OVERFLOW/UNDERFLOW ERRORS
➤ The computer uses a finite number of bytes to represent a number.  

This means there is a biggest possible floating point number the 
computer can represent. 

➤ In Python this is about 10308. If we tried to do y=10*1e308 in 
Python the value of y would be set to inf. This is called an overflow 
error. 

➤ There is also a smallest possible float on the computer.  If you try to 
make a float smaller than this value it will be set to 0.0 and you will  
get an underflow error. 

➤ In most languages integers also have maximum values, which is why 
there are many types of integer variables. Python simply allocates 
more memory to store an integer, until you run out of memory.



ACCURACY - ROUNDING ERROR
➤ A finite number of bytes means that the value of floats can not be 

kept with infinite accuracy. The value of π has been determined do 
billions of digits of accuracy, but the computer will use a truncated 
value of π with as many digits as it uses to hold any float value. 

➤ Since the computer stores a number in binary it won’t even 
necessarily store the same value as you enter for a float. 

➤ You should never check for a floats exact number x==0.1 because 
instead x might equal 0.10000000000000555. Instead check with 
an error 

(abs(x-2.50) < ε)  

➤ The rounding error behaves much like a measurement error in a 
physics lab. Importantly 
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EXERCISE
➤ 0.1 is not represented exactly 

in binary 

b=0.1 

print(type(b)) 

print(“{:30.20}”.format(b)) 

import sys 

sys.float_info



ACCURACY - ROUNDING ERROR

➤ It is usually a good assumption to consider the error to be a 
random number with standard deviation σ=Cx, where C is 
called the error constant and is 10-16 in Python.  

➤ From this we can see if we perform N summations the error 
would be  

➤ We see that the error increases as √N which means the 
fractional error decreases as √N, which in good.  So what’s 
the problem? Well in reality you may be adding numbers 
of very different sizes, which doesn’t scale as well, but 
more importantly you may be performing subtraction.
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EXERCISE
➤ difference of two numbers 

x=1 

y=1+10-14√2 

print(1e14*(y-x)) 

print(np.sqrt(2))



ACCURACY - ROUNDING ERROR
➤ Subtraction can lead to answers that are widely incorrect. If 

x=1000000000000000 and y=100000000000001.25, x-y will 
give 1. instead of 1.25. 

➤ Consider trying to evaluate exp(-24) using a Taylor series. 

➤ If we  compute S(-24) by adding terms until the term is less 
than machine precision – We find  

➤ S(-24) = 3.44305354288101977E-007  

➤ But exp(-24) = 3.77513454427909773E-011 

➤ This error is vastly bigger than the answer
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ACCURACY - ROUNDING ERROR
➤ What went wrong?  The calculation involves adding 

alternatively larger positive and negative numbers, 
subtraction of large numbers. Rounding error is huge! 

➤ If instead we could recognize that  

➤ exp(-24)=exp(-1)**24 -> S(-24) = S(-1)**24  

➤ S(-1) is well behaved, since each term is smaller in absolute 
magnitude than the previous.  

➤ S(-1) = 0.36787944117144245  

➤ S(-1)24 = 3.77513454427912681E-011 

➤ exp(-24) = 3.77513454427909773E-011



VOLUME OF A SHELL

➤ Another common example, often we might need the volume 
of a shell in a calculation. 

➤ This relies on the cancelation of two big numbers. Danger!! 

➤ Instead rewriting the formula as  

➤ is much safer. Try it for some large values of r.
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EXERCISE 4.2
➤ Write a program that takes as 

input 3 numbers; a, b and c and 
prints out two solutions to the 
quadratic equation. 

➤ Use your program to compute the 
solution to  0.001x2 + 1000x + 
0.001 = 0 

➤ There is another way to write the 
quadratic equation if you multiply 
the numerator and denominator by 
-b ∓ √b2-4ac, you’ll get  

➤ Add further lines to your 
program to also use this 
alternative solution. Do you get 
the same value for x? why?
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SPEED
➤ Besides not having infinite memory a computer also does not have 

infinite speed. While most operations happen so fast they seem to take 
zero time, they in fact take a finite about of time. 

➤ This is readily discernible if you do millions or billions of calculations, 
instead of one. 

➤ A million calculations can be done in around 1 second. 

➤ However, this means a billion calculations will take around 20 minutes. 

➤ A trillion calculations would take 300 hours or 12 days. 

➤ While the computer is incredibly fast, it is not infinitely fast. There is 
an upper limit to the number of calculations one can do in a reasonable 
time (where reasonable usually has to do with when you need the 
calculation by).



SPEED
➤ In many cases increasing the number of calculations does not increase the accuracy.  Thus 

one wants to be careful. Often an increase in speed does not mean much of  a loss of 
accuracy. 

➤ One place where the number of operations increases very rapidly in matrix multiplication 
(or general manipulation). 

C=np.zeros([N,N],float) 

for i in range(N): 

     for j in range(N): 

          for k in range(N): 

               C[i,j]+= A[i,k]*B[k,j] 

➤ This code snippet does two operations, multiplication and addition calculation. This is done 
N times over k, N times over j and N times over i so a total of 2N3 operations. 

➤ For N=1000 this is two billion operations. For N=2000 this is 16 billion operations. In 
practice it is complicated to handle matrices much larger than 1000×1000. 



EXERCISE
➤ Quantum Harmonic Oscillator 

➤ Let’s write a program to solve the 
average energy in a quantum 
harmonic oscillator which has 
energy levels En = hf(n+1/2). 

➤ The average energy is given by  

➤ taking hf=1, β=0.01 let us 
evaluate this formula using a 
thousand terms, a million 
terms and a billion terms.
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