
ACCURACY AND SPEED
Ari Maller

➤ There are two main considerations for most computer
algorithms which are often in tension with each other;
accuracy and speed.

➤ Accuracy refers to the how close the computed number is to
what one would get analytically when possible or compared to
a more accurate calculation if possible.

➤ Speed refers to the time (or CPU time) it takes to perform the
calculation.

➤ Usually accuracy and speed are in conflict in that you could
perform a more accurate calculation but it would take longer
and you can get a faster calculation but it is less accurate.

MACHINE PRECISION
➤ Floats are stored on a computer using a fixed number of bits.

➤ Single precision:

➤ Sign: 1 bit; exponent: 8 bits; significand: 24 bits (23 stored) = 32 bits

➤ Range: 27 -1 in exponent (because of sign) = 2127 multiplier ~ 1038

➤ Decimal precision: ~6 significant digits

➤ Double precision:

➤ Sign: 1 bit; exponent: 11 bits; significand: 53 bits (52 stored) = 64 bits

➤ Range: 210-1 in exponent = 21023 multiplier ~ 10308

➤ Decimal precision: ~15 significant digits

EXERCISE
➤ Find the machine precision of

your computer.

x=1.0

eps=1.0

while not x+eps==x:

 eps=0.5*eps

print(2*eps)

➤ This code will stop when
adding eps to x doesn’t change
the value of x.

OVERFLOW/UNDERFLOW ERRORS
➤ The computer uses a finite number of bytes to represent a number.

This means there is a biggest possible floating point number the
computer can represent.

➤ In Python this is about 10308. If we tried to do y=10*1e308 in
Python the value of y would be set to inf. This is called an overflow
error.

➤ There is also a smallest possible float on the computer. If you try to
make a float smaller than this value it will be set to 0.0 and you will
get an underflow error.

➤ In most languages integers also have maximum values, which is why
there are many types of integer variables. Python simply allocates
more memory to store an integer, until you run out of memory.

ACCURACY - ROUNDING ERROR
➤ A finite number of bytes means that the value of floats can not be

kept with infinite accuracy. The value of π has been determined do
billions of digits of accuracy, but the computer will use a truncated
value of π with as many digits as it uses to hold any float value.

➤ Since the computer stores a number in binary it won’t even
necessarily store the same value as you enter for a float.

➤ You should never check for a floats exact number x==0.1 because
instead x might equal 0.10000000000000555. Instead check with
an error

(abs(x-2.50) < ε)

➤ The rounding error behaves much like a measurement error in a
physics lab. Importantly

� =
q
�2
1 + �2

2

EXERCISE
➤ 0.1 is not represented exactly

in binary

b=0.1

print(type(b))

print(“{:30.20}”.format(b))

import sys

sys.float_info

ACCURACY - ROUNDING ERROR

➤ It is usually a good assumption to consider the error to be a
random number with standard deviation σ=Cx, where C is
called the error constant and is 10-16 in Python.

➤ From this we can see if we perform N summations the error
would be

➤ We see that the error increases as √N which means the
fractional error decreases as √N, which in good. So what’s
the problem? Well in reality you may be adding numbers
of very different sizes, which doesn’t scale as well, but
more importantly you may be performing subtraction.

�2 =
NX

i=1

C2x2
i = C2Nx̄

EXERCISE
➤ difference of two numbers

x=1

y=1+10-14√2

print(1e14*(y-x))

print(np.sqrt(2))

ACCURACY - ROUNDING ERROR
➤ Subtraction can lead to answers that are widely incorrect. If

x=1000000000000000 and y=100000000000001.25, x-y will
give 1. instead of 1.25.

➤ Consider trying to evaluate exp(-24) using a Taylor series.

➤ If we compute S(-24) by adding terms until the term is less
than machine precision – We find

➤ S(-24) = 3.44305354288101977E-007

➤ But exp(-24) = 3.77513454427909773E-011

➤ This error is vastly bigger than the answer

ex ⇡ S(x) = 1 +
x

1!
+

x2

2!
+ ...+

xn

n!

ACCURACY - ROUNDING ERROR
➤ What went wrong? The calculation involves adding

alternatively larger positive and negative numbers,
subtraction of large numbers. Rounding error is huge!

➤ If instead we could recognize that

➤ exp(-24)=exp(-1)**24 -> S(-24) = S(-1)**24

➤ S(-1) is well behaved, since each term is smaller in absolute
magnitude than the previous.

➤ S(-1) = 0.36787944117144245

➤ S(-1)24 = 3.77513454427912681E-011

➤ exp(-24) = 3.77513454427909773E-011

VOLUME OF A SHELL

➤ Another common example, often we might need the volume
of a shell in a calculation.

➤ This relies on the cancelation of two big numbers. Danger!!

➤ Instead rewriting the formula as

➤ is much safer. Try it for some large values of r.

V =
4

3
⇡(r31 � r32)

V =
4

3
⇡�r(r21 + r1r2 + r22)

EXERCISE 4.2
➤ Write a program that takes as

input 3 numbers; a, b and c and
prints out two solutions to the
quadratic equation.

➤ Use your program to compute the
solution to 0.001x2 + 1000x +
0.001 = 0

➤ There is another way to write the
quadratic equation if you multiply
the numerator and denominator by
-b ∓ √b2-4ac, you’ll get

➤ Add further lines to your
program to also use this
alternative solution. Do you get
the same value for x? why?

x =
2c

�b⌥
p
b2 � 4ac

SPEED
➤ Besides not having infinite memory a computer also does not have

infinite speed. While most operations happen so fast they seem to take
zero time, they in fact take a finite about of time.

➤ This is readily discernible if you do millions or billions of calculations,
instead of one.

➤ A million calculations can be done in around 1 second.

➤ However, this means a billion calculations will take around 20 minutes.

➤ A trillion calculations would take 300 hours or 12 days.

➤ While the computer is incredibly fast, it is not infinitely fast. There is
an upper limit to the number of calculations one can do in a reasonable
time (where reasonable usually has to do with when you need the
calculation by).

SPEED
➤ In many cases increasing the number of calculations does not increase the accuracy. Thus

one wants to be careful. Often an increase in speed does not mean much of a loss of
accuracy.

➤ One place where the number of operations increases very rapidly in matrix multiplication
(or general manipulation).

C=np.zeros([N,N],float)

for i in range(N):

 for j in range(N):

 for k in range(N):

 C[i,j]+= A[i,k]*B[k,j]

➤ This code snippet does two operations, multiplication and addition calculation. This is done
N times over k, N times over j and N times over i so a total of 2N3 operations.

➤ For N=1000 this is two billion operations. For N=2000 this is 16 billion operations. In
practice it is complicated to handle matrices much larger than 1000×1000.

EXERCISE
➤ Quantum Harmonic Oscillator

➤ Let’s write a program to solve the
average energy in a quantum
harmonic oscillator which has
energy levels En = hf(n+1/2).

➤ The average energy is given by

➤ taking hf=1, β=0.01 let us
evaluate this formula using a
thousand terms, a million
terms and a billion terms.

< E >=
1

Z

1X

n=0

Ene
��En

Z =
1X

n=0

e��En

