
INTEGRATION
Ari Maller

NUMERICAL INTEGRATION

➤ Evaluating integrals is one of the most obvious things to do
on a computer. Replacing the area under a curve with a large
number of thin rectangles makes perfect sense on a computer
(less sense when one is first learning calculus).

➤ The simplest situation is a one dimensional integral over a
finite range. There are two common approaches to evaluating
these types of integrals

➤ Trapezoidal Rule

➤ Simpsons Rule

F =

Z b

a
f(x)dx

a b
x

f(x)

RECTANGLE RULE

➤ The simplest way to approach
an integral numerically would
be to evaluate the function at
N different points and then
make a rectangle with the
spacing between the points
and then add up the
rectangles.

F =
NX

i=0

f(xi)�x

a b
x

f(x)

TRAPEZOIDAL METHOD

➤ Only slightly more
complicated instead of adding
rectangles we can add
trapezoids.

➤ Since we are already evaluate
f(x) at N points, this does not
increase the number of
evaluations.

➤ The area of each trapezoid is

➤ Adding up N trapezoids gives

a+(k-1)Δx a+kΔx

Ak =
1

2
�x[f(a+ (k � 1)�x) + f(a+ k�x)]

F = �x[
1

2
f(a) +

1

2
f(b) +

NX

k=1

f(a+ k�x)]

EXAMPLE 5.1
➤ Let’s use the trapezoidal rule

to calculate the integral of
x4-2x+1 from 0 to 2.

➤ Let’s start our program with
10 slices and then increase it
to 100 and 1000.

➤ Solving the integral you
should get 4.4.

F = �x[
1

2
f(a) +

1

2
f(b) +

NX

k=1

f(a+ k�x)]

EXAMPLE 5.1

def f(x):

 return x**4 - 2*x + 1

N = 10

a = 0.0

b = 2.0

h = (b-a)/N

s = 0.5*f(a) + 0.5*f(b)

for k in range(1,N):

 s += f(a+k*h)

print(h*s)

HIGHER ORDER FITS

➤ The trapezoidal method improves over the rectangle rule
because x1 fit to the curve is going to be better than a x0 fit.

➤ By this logic a quadratic fit will be even closer to the function
we are trying to integrate then a linear fit.

➤ Fitting a quadratic to the curve is called Simpson’s Rule.

➤ Let us consider three points given by -Δx, 0 and Δx. Then the
value of our quadratic at these three points will be

➤ From these three equations we can no solve for A,B and C.

f(��x) = A(�x)2 �B�x+ C f(�x) = A(�x)2 +B�x+ Cf(0) = C

A =
1

(�x)2
[
1

2
f(��x)� f(0) +

1

2
f(�x)] B =

1

2�x
[f(�x)� f(��x)] C = f(0)

a b
x

f(x)

Quadratic 1 Quadratic 2

SIMPSON’S RULE

➤ The integral from -Δx to Δx of the
quadratic is then

➤ So we have an algebraic expression
for the area in this range. We can
then sum up these areas from a to
b. Note that we must choose the
number of steps, N to be even in
this case.

Z �x

��x
(Ax2 +Bx+ C)dx =

2

3
(�x)3 + 2C�x

=
1

3
�x[f(��x) + 4f(0) + f(�x)]

F (a, b) ' 1

3
[f(a) + f(b)

+4

N/2X

k=1

f(a+ (2k � 1)�x)

+2

N/2�1X

k=1

f(a+ 2k�x)]

EXERCISE 5.2

➤ Solve the same integral from
before x4-2x+1 from 0 to 2
but now using Simpson’s rule
with 10 slices.

➤ Now use 100 and 1000. How
do your results compare to
what we found using the
trapezoidal rule?

F (a, b) ' 1

3
[f(a) + f(b)

+4

N/2X

k=1

f(a+ (2k � 1)�x)

+2

N/2�1X

k=1

f(a+ 2k�x)]

ERRORS ON INTEGRATION

➤ While rounding error exists in numerical integration it is not
usually the main source of error.

➤ Approximation error is the dominant source of error. This is
the error introduced because linear or quadratic fit only
approximates the true function.

➤ Let us consider a Taylor expansion around a point xk-1 which
is a distance h away from x. This gives

➤ if we now integrate from xk-1 to x we get
Z xk

xk�1

f(x)dx = hf(xk�1) +
1

2
h
2
f
0(xk�1) +

1

6
h
3
f
00(xk�1) +O(h4)

f(x) = f(xk�1) + hf 0(xk�1) +
1

2
h2f 00(xk�1) + ...

ERRORS ON INTEGRATION

➤ if we instead expand around xk we would get

➤ now averaging the two expressions gives

➤ we can now sum over k for all slices from a to b

➤ The second term is the trapezoidal method that we have used to numerically
estimate the integral, which means the remaining terms are the difference
between that estimate and the correct value.

➤ The sum in the second term disappears because you are adding and
subtracting each f ’(xk).

Z xk

xk�1

f(x)dx = hf(xk)�
1

2
h
2
f
0(xk) +

1

6
h
3
f
00(xk)�O(h4)

Z xk

xk�1

f(x)dx =
1

2
h(f(xk�1) + f(xk))�

1

4
h
2(f 0(xk1)� f

0(xk)) +
1

12
h
3(f 00(xk�1) + f

00(xk))�O(h4)

Z b

a
f(x)dx =

1

2
h

NX

k=1

[f(xk�1) + f(xk)] +
1

4
h
2[f 0(a)� f

0(b)]

+
1

12
h
3

NX

k=1

(f 00(xk�1) + f
00(xk)) +O(h4)

EULER-MACLAURIN FORMULA FOR THE ERROR

➤ The third term is just the trapezoidal approximation for f ’’(x)

➤ substituting this back into our result we get

➤ Thus the error, the difference between the integral and the
trapezoidal method, first term or terms of order less than h4 is

✏ =
1

12
h2|f 0(a)� f 0(b)|

1

12
h
3

NX

k=1

[f 00(xk�1) + f
00(xk)] =

1

6
h
2

Z b

a
f
00(x)dx+O(h4) =

1

6
h
2[f 0(b)� f

0(a)] +O(h4)

Z b

a
f(x)dx =

1

2
h

NX

k=1

[f(xk�1) + f(xk)] +
1

12
h
2[f 0(a)� f

0(b)] +O(h4)

ORDER OF ACCURACY

➤ The equation for the error tells us that the trapezoidal rule is a
first-order integration scheme. It is accurate to terms involving h
and the first term of its error is h2.

➤ If we do similar analysis for the Simpson’s rule we would find the
first term in the error is give by

➤ The Simpson’s method is a third-order integration method. It is
accurate to terms involving h3 and the first term of the error is h4.

➤ Note that because the error for the trapezoidal rule depends on
the first derivative while for Simpson’s rule it depends on the
third derivative in some cases the error for Simpson’s integration
can be much larger than trapezoidal.

✏ =
1

90
h4[f 000(a)� f 000(b)]

PRACTICAL ESTIMATION OF ERRORS

➤ Our estimates of the error in our integration schemes depend on
knowing the derivatives at a and b. However, often we will want
to integrate values which may not be a mathematical function.

➤ In this case we can estimate the error by evaluating the integral
with a certain number of steps N1 and step size h1. And then
evaluating the integral again with say double the number of steps
N2 = 2N1 and half the step size h2 = 1/2 h1.

➤ If the true value of the integral is I, and the difference between
the true value and the numerical value is ch2, we will have

➤ the error on the second integration would be ε2 = 1/3|I2 - I1|.
Similarly for Simpson’s method we would get ε2 = 1/15|I2 - I1|.

I1 + ch2
1 = I2 + ch2

2 => I2 � I1 = ch2
1 � ch2

2 = 3ch2
2

EXERCISE 5.6

➤ Modify your program that
calculates the integral of
x4-2x+1 so that it can
estimate the error with 20
steps.

➤ To do this you’ll have to run it
with 10 steps and then 20
steps.

NUMBER OF STEPS

➤ How do we decide the number of steps to take in evaluating our
integral.

➤ If we take h to be very small we can make the approximation error
very small.

➤ But if h becomes too small then round off error begins to grow. We
can even choose h so small that when we add the next step to our
sum it doesn't actually increase it.

➤ Clearly decreases h is of no help once the approximation error is of
order the rounding error. For the trapezoidal rule

➤ In Python where C~10-16 this gives N~108. For Simpson’s rule we
get N~104.

1

12
h2[f 0(a)� f 0(b)] ' C

Z b

a
f(x)dx

ADAPTIVE INTEGRATION

➤ Going to machine precision can take a long time if you are
evaluating many integrals and is rarely the accuracy you
actually need.

➤ Another choice is estimate the accuracy by running two values
of the number of steps and then continue increasing N until
you get the desired accuracy.

➤ If we double the number of steps then we don’t actually need
to evaluate each of those steps because half of them were in the
previous calculation.

➤ This is called nested steps and makes adaptive integration only
take about as long as the final number of steps you end up
using.

ADAPTIVE INTEGRATION

➤ Because adaptive nested steps has almost the same computational
cost as a fixed number of steps this is almost always the way
integrals are evaluated.

➤ A starting value is chose for the number of steps N and the
function is evaluated at those N points.

➤ Then you use 2N steps, but you only have to evaluate the function
for N new points. The number of points keeps being doubled and
each time the error can be estimated so the process stops when the
error is less than a specified value.

➤ This insures you never use too many steps, more steps than needed
to get the error you are looking for. This helps tremendously with
speed, especially if you are performing many integrals.

ROMBERG INTEGRATION

➤ One can imagine doing even better than adaptive stepping by
using error estimates to improve our calculation of the
integral.

➤ Remember for the trapezoidal rule we had for the error

➤ but since the integral I=Ii + chi2 + O(h4) we can write the
true value as

➤ This expression is now accurate to 3rd order, as accurate as
Simpson’s method.

ch2
i = Ii � Ii�1

I = Ii +
1

3
(Ii � Ii�1) +O(h4)

ROMBERG INTEGRATION

➤ Let’s refine out notation. Let the result of our integration be
called R with a first subscript denoting the number of
adaptive steps we’ve taken and a second subscript denoting
the order of corrections we have done to calculated value. So

➤ which tells us the true value of the integral should be

➤ where c2 is a new constant and there is no h5 term because
only even powers contribute. We can also equate to

➤ and use this to eliminate the h4 term.

Ri, 1 = Ii Ri,2 = Ii +
1

3
(Ii � Ii�1) = Ri,1 +

1

3
(Ri,1 �Ri�1,1)

I = Ri,2 + c2h
4
i +O(h6

i)

I = Ri�1,2 + c2h
4
i�1 +O(h6

i�1) = Ri,2 + 16c2h
4
i +O(h6

i)

ROMBERG INTEGRATION

➤ We now have an estimate of the integral that is accurate to fifth order
in h!

➤ And there is no reason we have to stop here. For trapezoidal
computation we make with a different step size we add an additional
correction to our error.

➤ If we calculate I1, I2, I3 and I4 then we can use the difference between
them to determine R4,4, a correction to I4 based on the values of I1, I2
and I3.

➤ If we are using adaptive step sizes then we are calculating these
anyway so Romberg integration requires very little extra computation.

c2h
4
i =

1

15
(Ri,2 �Ri�1,2 +O(h6

i)

I = Ri,2 +
1

15
(Ri,2 �Ri�1,2) +O(h6

i)

RICHARDSON EXTRAPOLATION

➤ Romberg integration in essence is making a series expansion around
the step size h.

➤ It will work will if this series converges quickly. If the series doesn’t
for many terms then you don’t gain anything over simple adaptive
trapezoidal rule.

➤ For well behaved integrals this should work well. But if the
integrand is poorly behaved, contains wild fluctuations, singularities
or is very noisy, Romberg integration is not a good method.

➤ Romberg integration is an example of Richardson extrapolation where
higher order estimates of quantities are calculated iteratively. We
will return to this method when discussing solutions to differential
equations.

HIGHER ORDER METHODS

➤ We have seen that the trapezoidal method fits the integrand with
a line or first order polynomial.

➤ And Simpson’s method uses a quadratic or 2nd order polynomial.

➤ There is nothing to stop us using higher order polynomials. A
general description of this method can be written as

➤ where wk is the weight applied to each term in the sum. Higher
order calculations end up just being a change in the weights, wk.
These methods as a whole are called Newton-Cotes formula
where the integrand is evaluated at equally spaced points.

Z b

a
f(x)dx '

NX

k=1

wkf(xk)

GAUSSIAN QUADRATURE

➤ So far we have just adjusted the weights given to each of our
evaluation of the integrand, now we turn to adjusting where
we evaluate the integrand.

➤ Suppose we are given a nonuniform set of N points xk and we
want to develop an integration rule that will only use the
value of the function f(xk) at those points.

➤ This could be for example a set of experimental data where
we don’t have the luxury of simply increasing N to larger and
larger values.

➤ If we fit a N-1 polynomial to our points then we will be able
to integrate it exactly.

GAUSSIAN QUADRATURE

➤ Consider the following function called the interpolating
polynomial

➤ This is a N-1 polynomial. The value of this function at xm will
be the Kronecker delta, that is 1 for k=m and 0 otherwise.

➤ We can use this function to find a fits the integrand f(x) at the
same points.

➤ so we can now evaluate our integral.

�k(x) =
NY

m=1

(x� xm)

xk � xm

�k(xm) = �km

�(xm) =
NX

k=1

f(xk)�k(xm) =
NX

k=1

f(xk)�km = f(xm)

Z b

a
f(x)dx '

Z b

a
�(x)dx =

Z b

a

NX

k=1

f(xk)�k(x)dx =
NX

k=1

f(xk)

Z b

a
�k(x)dx

GAUSSIAN QUADRATURE

➤ So we find that the weights we need when evaluating the integral are

➤ This might seem like not much of a victory, because there are no
general closed form formula for the interpolating polynomial. So
we’ve simply replaced our unknown integral with a different
unknown integral.

➤ However, the difference is that we only have to calculate these
weights over a specific range once, and then we can use them over
and over to calculate different integrals.

➤ It is even better than this because the weights can be mapped
between different intervals. Traditionally they are calculated for
[-1,1], but we can just slide any interval [a,b] over to that range.

wk =

Z b

a
�k(x)dx

x0
k =

1

2
(b� a)xk +

1

2
(b+ a) w0

k =
1

2
(b� a)wk

GAUSSIAN QUADRATURE

➤ We now have a method that will give us the weights given the points we
are going to evaluate in our integrand, but how should we choose the
points to evaluate.

➤ It turns out that the best choice is the zeros of the Nth Legendre
polynomial PN(x), rescaled to the window of integration. Proof is given in
Appendix C in the book.

➤ The weights to use are then

➤ This is called Gaussian quadrature, there are under quadratures using
different basis functions that work in a similar way.

➤ While the math is much more complicated the code to run this
integration isn’t that bad and can give very accurate answers in a small
number of steps.

wk =
⇥ 2

(1� x2)

�dPN

dx

��2⇤
x=xk

-1 -0.5 0 0.5 1

Position x

0.1

0.2

0.3

W
ei

gh
t
w

-1 -0.5 0 0.5 1

Position x

0

0.01

0.02

0.03

W
ei

gh
t
w

The sample points and weights for Gaussian quadrature for
N=10 and N=100 points. While it took some effort to get here,
once these values are calculated you can use them now forever to
evaluate integrands over this range with these number of points.
Notice that the points are not uniformly spaced.

EXAMPLE 5.2

➤ We can use Gaussian quadrature
to evaluate the integrand we have
been using this whole chapter

➤ f(x) = x4 - 2x + 1

➤ We will only need 3 steps this
time. To get the points and
weights however we will need a
package gaussxw (http://www-
personal.umich.edu/~mejn/
computational-physics/).

➤ Once you get the points and
weights you just sum the
function at those points with
those weights.

Z b

a
f(x)dx '

NX

k=1

wkf(xk)

http://www-personal.umich.edu/~mejn/computational-physics/
http://www-personal.umich.edu/~mejn/computational-physics/
http://www-personal.umich.edu/~mejn/computational-physics/

ERROR ON GAUSSIAN QUADRATURE

➤ The formula for the error from Gaussian quadrature is ungainly and not easy
to use in practice. Roughly the error improves by c/N2 for each increase in N.
That is going from 10 to 11 points gives a hundred fold increase in accuracy.
Doubling the number of points gives a reduction in error of roughly N-2N.

➤ If we make two determinations of an integral with Gaussian quadrature then
the one with more points is so much more accurate we can treat it like it has
zero error and estimate the error as the difference between our two
evaluations. This is really the error of the evaluation with fewer points, but
none the less is a way to estimate an error. One can then increase the number
of points till you have the accuracy you desire.

➤ What this means is one can start with say N=10 points for a Gaussian
quadrature and then keep doubling them till the error is below some limit.
However, because the points are not nested each time one has to determine
the points, weights and values of the integrand, so it is not nearly as effective
as adaptive stepping for a Newton-Cotes formula method.

CHOOSING AN INTEGRATION METHOD

➤ We have discussed four methods for numerical integration; trapezoidal,
Simpson’s, Romberg and Gaussian quadrature. Now the question is
which one should you use?

➤ The answer, as always, depends on exactly what you want to do. Higher
order methods will give you an accurate answer in few steps if the
integrand is well behaved.

➤ For problematic integrands higher order methods may not converge well
and simpler methods like trapezoidal may before better.

➤ The key feature is really how many points are needed to get a good sense
of what the integrand looks like. If you need 10,000 then Romberg and
Gaussian will fail miserably with 10. If 10 basically gives you a good
sketch of the function then they will do well.

➤ Whether you need even spacing or not will also depend on the situation.

INFINITE RANGE INTERVALS

➤ So far we have discussed integration between two points a
and b, but what if we want to evaluate an integral between 0
and infinity.

➤ Then dividing the space by N will not help. Either each step
will be infinitely large or if we choose a finite h then we will
need an infinite number of steps to evaluate the integral.

➤ To deal with integrals over an infinite range we use a change
of variables to make the range finite.

x =
z

z � 1

Z 1

0
f(x)dx =

Z 1

0

1

(z � 1)2
f(

z

1� z
)dz

INFINITE RANGE INTERVALS

➤ While a common choice, there are many substitutions possible,
some will work better than others. In general,

➤ for any c or γ are common choices.

➤ The integral can also be broken up into pieces. For example an
integral from minus infinity to infinity is the sum of two integrals
one from minus infinity to zero and one from zero to infinity.
Different substitutions can be done over the different ranges.

➤ Unfortunately there are no hard and fast rules. Trial and error
may be necessary to find the best way to evaluate a given
situation.

z =
x

c+ x
z =

x�

1 + x�
x = tan z

MULTIPLE INTEGRATION

➤ So far we have only discussed integration over one variable,
but in physics we often have integrals over multiple variables.
If we have an integral

➤ one way to solve it is to define a function F(y) where

➤ So this way we would choose certain y values to use in
evaluating our integral and then numerically determine those
values by numerically integration over x to get F(y).

➤ Writing the sums we get the Gauss-Legendre product formula:

Z 1

0

Z 1

0
f(x, y)dxdy

F (y) =

Z 1

0
f(x, y)dx I =

Z 1

0
F (y)dy

I '
NX

i=1

NX

j=1

wiwjf(xi, xj)

MULTIPLE INTEGRATION

➤ If we were using quadrature
we could end up with a point
distribution like the following.

➤ However, there is no more
reason to have an evenly
spaced grid in 2D then there
was to have evenly spaced
steps in 1D.

➤ A number of schemes for
choosing points in higher
dimensions exist, but there is
no known best solution.

MULTIPLE INTEGRATION

➤ The distribution to the left is
called the Sobol sequence and
is one choice that seems to
give results in higher
dimensions.

➤ Another approach is to just
choose the points randomly.
This is called Monte Carlo
integration and we will
discuss it later in the term.

MULTIPLE INTEGRATION

➤ We have been looking at integrals
that are both to fixed numbers.

➤ But we also encounter integrals
where the limit on one is a variable:

➤ Numerically this would lead to two
sums, but where the second sum
would not be to N, but instead to i
as it steps up to N.

➤ This would give something like the
points you see on the left, but it
isn’t clear this is a very good
scheme as you can see some places
have a lot of points while others
have few.

I =

Z 1

0
dy

Z y

0
dxf(x, y)

MULTIPLE INTEGRATION

➤ In higher dimensions you can all kinds of strange volumes to
integrate over.

➤ This can cause problems and there are various techniques to
try and address them.

➤ One choice, as mentioned, is Monte Carlo integration where
points are selected randomly.

➤ Others we won’t go in to, but if you have a case of multiple
integration over a volume that seems complicated be aware
that straightforward application of a grid may not be a very
efficient method for evaluating the integral.

