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NUMERICAL INTEGRATION

➤ Evaluating integrals is one of the most obvious things to do 
on a computer. Replacing the area under a curve with a large 
number of thin rectangles makes perfect sense on a computer 
(less sense when one is first learning calculus). 

➤ The simplest situation is a one dimensional integral over a 
finite range. There are two common approaches to evaluating 
these types of integrals 

➤ Trapezoidal Rule 

➤ Simpsons Rule
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RECTANGLE RULE 

➤ The simplest way to approach 
an integral numerically would 
be to evaluate the function at 
N different points and then 
make a rectangle with the 
spacing between the points 
and then add up the 
rectangles.
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TRAPEZOIDAL METHOD

➤ Only slightly more 
complicated instead of adding 
rectangles we can add 
trapezoids. 

➤ Since we are already evaluate 
f(x) at N points, this does not 
increase the number of 
evaluations. 

➤ The area of each trapezoid is 

➤ Adding up N trapezoids gives

a+(k-1)Δx a+kΔx
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EXAMPLE 5.1
➤ Let’s use the trapezoidal rule 

to calculate the integral of 
x4-2x+1 from 0 to 2. 

➤ Let’s start our program with 
10 slices and then increase it 
to 100 and 1000. 

➤ Solving the integral you 
should get 4.4.
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EXAMPLE 5.1

def f(x): 

    return x**4 - 2*x + 1 

N = 10 

a = 0.0 

b = 2.0 

h = (b-a)/N 

s = 0.5*f(a) + 0.5*f(b) 

for k in range(1,N): 

    s += f(a+k*h) 

print(h*s)



HIGHER ORDER FITS

➤ The trapezoidal method improves over the rectangle rule 
because x1 fit to the curve is going to be better than a x0 fit. 

➤ By this logic a quadratic fit will be even closer to the function 
we are trying to integrate then a linear fit. 

➤ Fitting a quadratic to the curve is called Simpson’s Rule. 

➤ Let us consider three points given by -Δx, 0 and Δx. Then the 
value of our quadratic at these three points will be 

➤ From these three equations we can no solve for A,B and C.

f(��x) = A(�x)2 �B�x+ C f(�x) = A(�x)2 +B�x+ Cf(0) = C
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Quadratic 1 Quadratic 2

SIMPSON’S RULE

➤ The integral from -Δx to Δx of the 
quadratic is then  

➤ So we have an algebraic expression 
for the area in this range. We can 
then sum up these areas from a to 
b. Note that we must choose the 
number of steps, N to be even in 
this case.
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EXERCISE 5.2

➤ Solve the same integral from 
before x4-2x+1 from 0 to 2 
but now using Simpson’s rule 
with 10 slices. 

➤ Now use 100 and 1000. How 
do your results compare to 
what we found using the 
trapezoidal rule?
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ERRORS ON INTEGRATION

➤ While rounding error exists in numerical integration it is not 
usually the main source of error. 

➤ Approximation error is the dominant source of error. This is 
the error introduced because linear or quadratic fit only 
approximates the true function.  

➤ Let us consider a Taylor expansion around a point xk-1 which 
is a distance h away from x. This gives  

➤ if we now integrate from xk-1 to x we get 
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ERRORS ON INTEGRATION

➤ if we instead expand around xk we would get 

➤ now averaging the two expressions gives  

➤ we can now sum over k for all slices from a to b 

➤ The second term is the trapezoidal method that we have used to numerically 
estimate the integral, which means the remaining terms are the difference 
between that estimate and the correct value. 

➤ The sum in the second term disappears because you are adding and 
subtracting each f ’(xk).
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EULER-MACLAURIN FORMULA FOR THE ERROR

➤ The third term is just the trapezoidal approximation for f ’’(x) 

➤ substituting this back into our result we get  

➤ Thus the error, the difference between the integral and the 
trapezoidal method, first term or terms of order less than h4 is
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ORDER OF ACCURACY

➤ The equation for the error tells us that the trapezoidal rule is a 
first-order integration scheme. It is accurate to terms involving h 
and the first term of its error is h2. 

➤ If we do similar analysis for the Simpson’s rule we would find the 
first term in the error is give by 

➤ The Simpson’s method is a third-order integration method. It is 
accurate to terms involving h3 and the first term of the error is h4. 

➤ Note that because the error for the trapezoidal rule depends on 
the first derivative while for Simpson’s rule it depends on the 
third derivative in some cases the error for Simpson’s integration 
can be much larger than trapezoidal.
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PRACTICAL ESTIMATION OF ERRORS

➤ Our estimates of the error in our integration schemes depend on 
knowing the derivatives at a and b.  However, often we will want 
to integrate values which may not be a mathematical function. 

➤ In this case we can estimate the error by evaluating the integral 
with a certain number of steps N1 and step size h1. And then 
evaluating the integral again with say double the number of steps 
N2 = 2N1 and half the step size h2 = 1/2 h1. 

➤ If the true value of the integral is I, and the difference between 
the true value and the numerical value is ch2, we will have  

➤ the error on the second integration would be ε2 = 1/3|I2 - I1|. 
Similarly for Simpson’s method we would get ε2 = 1/15|I2 - I1|.

I1 + ch2
1 = I2 + ch2

2 => I2 � I1 = ch2
1 � ch2

2 = 3ch2
2



EXERCISE 5.6

➤ Modify your program that 
calculates the integral of 
x4-2x+1 so that it can 
estimate the error with 20 
steps. 

➤ To do this you’ll have to run it 
with 10 steps and then 20 
steps.



NUMBER OF STEPS

➤ How do we decide the number of steps to take in evaluating our 
integral.   

➤ If we take h to be very small we can make the approximation error 
very small. 

➤ But if h becomes too small then round off error begins to grow.  We 
can even choose h so small that when we add the next step to our 
sum it doesn't actually increase it.   

➤ Clearly decreases h is of no help once the approximation error is of 
order the rounding error. For the trapezoidal rule  

➤ In Python where C~10-16 this gives N~108. For Simpson’s rule we 
get N~104.
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ADAPTIVE INTEGRATION

➤ Going to machine precision can take a long time if you are 
evaluating many integrals and is rarely the accuracy you 
actually need. 

➤ Another choice is estimate the accuracy by running two values 
of the number of steps and then continue increasing N until 
you get the desired accuracy. 

➤ If we double the number of steps then we don’t actually need 
to evaluate each of those steps because half of them were in the 
previous calculation. 

➤ This is called nested steps and makes adaptive integration only 
take about as long as the final number of steps you end up 
using.



ADAPTIVE INTEGRATION

➤ Because adaptive nested steps has almost the same computational 
cost as a fixed number of steps this is almost always the way 
integrals are evaluated. 

➤ A starting value is chose for the number of steps N and the 
function is evaluated at those N points. 

➤ Then you use 2N steps, but you only have to evaluate the function 
for N new points.  The number of points keeps being doubled and 
each time the error can be estimated so the process stops when the 
error is less than a specified value. 

➤ This insures you never use too many steps, more steps than needed 
to get the error you are looking for. This helps tremendously with 
speed, especially if you are performing many integrals.



ROMBERG INTEGRATION

➤ One can imagine doing even better than adaptive stepping by 
using error estimates to improve our calculation of the 
integral.   

➤ Remember for the trapezoidal rule we had for the error  

➤ but since the integral I=Ii + chi2 + O(h4) we can write the 
true value as  

➤ This expression is now accurate to 3rd order, as accurate as 
Simpson’s method.
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ROMBERG INTEGRATION

➤ Let’s refine out notation.  Let the result of our integration be 
called R with a first subscript denoting the number of 
adaptive steps we’ve taken and a second subscript denoting 
the order of corrections we have done to calculated value. So 

➤ which tells us the true value of the integral should be  

➤ where c2 is a new constant and there is no h5 term because 
only even powers contribute. We can also equate to  

➤ and use this to eliminate the h4 term.
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ROMBERG INTEGRATION

➤ We now have an estimate of the integral that is accurate to fifth order 
in h! 

➤ And there is no reason we have to stop here. For trapezoidal 
computation we make with a different step size we add an additional 
correction to our error.  

➤ If we calculate I1, I2, I3 and I4 then we can use the difference between 
them to determine R4,4, a correction to I4 based on the values of I1, I2 
and I3.  

➤ If we are using adaptive step sizes then we are calculating these 
anyway so Romberg integration requires very little extra computation.
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RICHARDSON EXTRAPOLATION

➤ Romberg integration in essence is making a series expansion around 
the step size h.   

➤ It will work will if this series converges quickly.  If the series doesn’t 
for many terms then you don’t gain anything over simple adaptive 
trapezoidal rule. 

➤ For well behaved integrals this should work well. But if the 
integrand is poorly behaved, contains wild fluctuations, singularities 
or is very noisy, Romberg integration is not a good method.  

➤ Romberg integration is an example of Richardson extrapolation where 
higher order estimates of quantities are calculated iteratively. We 
will return to this method when discussing solutions to differential 
equations.



HIGHER ORDER METHODS

➤ We have seen that the trapezoidal method fits the integrand with 
a line or first order polynomial. 

➤ And Simpson’s method uses a quadratic or 2nd order polynomial. 

➤ There is nothing to stop us using higher order polynomials. A 
general description of this method can be written as  

➤ where wk is the weight applied to each term in the sum. Higher 
order calculations end up just being a change in the weights, wk. 
These methods as a whole are called Newton-Cotes formula 
where the integrand is evaluated at equally spaced points.
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GAUSSIAN QUADRATURE 

➤ So far we have just adjusted the weights given to each of our 
evaluation of the integrand, now we turn to adjusting where 
we evaluate the integrand. 

➤ Suppose we are given a nonuniform set of N points xk and we 
want to develop an integration rule that will only use the 
value of the function f(xk) at those points. 

➤ This could be for example a set of experimental data where 
we don’t have the luxury of simply increasing N to larger and 
larger values. 

➤ If we fit a N-1 polynomial to our points then we will be able 
to integrate it exactly.



GAUSSIAN QUADRATURE 

➤ Consider the following function called the interpolating 
polynomial 

➤ This is a N-1 polynomial. The value of this function at xm will 
be the Kronecker delta, that is 1 for k=m and 0 otherwise. 

➤ We can use this function to find a fits the integrand f(x) at the 
same points.  

➤ so we can now evaluate our integral.
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GAUSSIAN QUADRATURE 

➤ So we find that the weights we need when evaluating the integral are  

➤ This might seem like not much of a victory, because there are no 
general closed form formula for the interpolating polynomial. So 
we’ve simply replaced our unknown integral with a different 
unknown integral.  

➤ However, the difference is that we only have to calculate these 
weights over a specific range once, and then we can use them over 
and over to calculate different integrals. 

➤ It is even better than this because the weights can be mapped 
between different intervals. Traditionally they are calculated for 
[-1,1], but we can just slide any interval [a,b] over to that range.

wk =

Z b

a
�k(x)dx

x0
k =

1

2
(b� a)xk +

1

2
(b+ a) w0

k =
1

2
(b� a)wk



GAUSSIAN QUADRATURE 

➤ We now have a method that will give us the weights given the points we 
are going to evaluate in our integrand, but how should we choose the 
points to evaluate.  

➤ It turns out that the best choice is the zeros of the Nth Legendre 
polynomial PN(x), rescaled to the window of integration. Proof is given in 
Appendix C in the book. 

➤ The weights to use are then  

➤ This is called Gaussian quadrature, there are under quadratures using 
different basis functions that work in a similar way. 

➤ While the math is much more complicated the code to run this 
integration isn’t that bad and can give very accurate answers in a small 
number of steps.
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The sample points and weights for Gaussian quadrature for 
N=10 and N=100 points. While it took some effort to get here, 
once these values are calculated you can use them now forever to 
evaluate integrands over this range with these number of points. 
Notice that the points are not uniformly spaced.



EXAMPLE 5.2

➤ We can use Gaussian quadrature 
to evaluate the integrand we have 
been using this whole chapter  

➤ f(x) = x4 - 2x + 1 

➤ We will only need 3 steps this 
time. To get the points and 
weights however we will need a 
package gaussxw (http://www-
personal.umich.edu/~mejn/
computational-physics/). 

➤ Once you get the points and 
weights you just sum the 
function at those points with 
those weights.
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ERROR ON GAUSSIAN QUADRATURE 

➤ The formula for the error from Gaussian quadrature is ungainly and not easy 
to use in practice.  Roughly the error improves by c/N2 for each increase in N. 
That is going from 10 to 11 points gives a hundred fold increase in accuracy. 
Doubling the number of points gives a reduction in error of roughly N-2N.  

➤ If we make two determinations of an integral with Gaussian quadrature then 
the one with more points is so much more accurate we can treat it like it has 
zero error and estimate the error as the difference between our two 
evaluations.  This is really the error of the evaluation with fewer points, but 
none the less is a way to estimate an error. One can then increase the number 
of points till you have the accuracy you desire. 

➤ What this means is one can start with say N=10 points for a Gaussian 
quadrature and then keep doubling them till the error is below some limit.  
However, because the points are not nested each time one has to determine 
the points, weights and values of the integrand, so it is not nearly as effective 
as adaptive stepping for a Newton-Cotes formula method.



CHOOSING AN INTEGRATION METHOD

➤ We have discussed four methods for numerical integration; trapezoidal, 
Simpson’s, Romberg and Gaussian quadrature.  Now the question is 
which one should you use? 

➤ The answer, as always, depends on exactly what you want to do.  Higher 
order methods will give you an accurate answer in few steps if the 
integrand is well behaved.  

➤ For problematic integrands higher order methods may not converge well 
and simpler methods like trapezoidal may before better. 

➤ The key feature is really how many points are needed to get a good sense 
of what the integrand looks like. If you need 10,000 then Romberg and 
Gaussian will fail miserably with 10. If 10 basically gives you a good 
sketch of the function then they will do well. 

➤ Whether you need even spacing or not will also depend on the situation.



INFINITE RANGE INTERVALS

➤ So far we have discussed integration between two points a 
and b, but what if we want to evaluate an integral between 0 
and infinity. 

➤ Then dividing the space by N will not help. Either each step 
will be infinitely large or if we choose a finite h then we will 
need an infinite number of steps to evaluate the integral. 

➤ To deal with integrals over an infinite range we use a change 
of variables to make the range finite. 
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INFINITE RANGE INTERVALS

➤ While a common choice, there are many substitutions possible, 
some will work better than others. In general, 

➤ for any c or γ are common choices.  

➤ The integral can also be broken up into pieces. For example an 
integral from minus infinity to infinity is the sum of two integrals 
one from minus infinity to zero and one from zero to infinity. 
Different substitutions can be done over the different ranges. 

➤ Unfortunately there are no hard and fast rules. Trial and error 
may be necessary to find the best way to evaluate a given 
situation. 
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MULTIPLE INTEGRATION

➤ So far we have only discussed integration over one variable, 
but in physics we often have integrals over multiple variables. 
If we have an integral  

➤ one way to solve it is to define a function F(y) where  

➤ So this way we would choose certain y values to use in 
evaluating our integral and then numerically determine those 
values by numerically integration over x to get F(y). 

➤ Writing the sums we get the Gauss-Legendre product formula:
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MULTIPLE INTEGRATION

➤ If we were using quadrature 
we could end up with a point 
distribution like the following. 

➤ However, there is no more 
reason to have an evenly 
spaced grid in 2D then there 
was to have evenly spaced 
steps in 1D. 

➤ A number of schemes for 
choosing points in higher 
dimensions exist, but there is 
no known best solution.



MULTIPLE INTEGRATION

➤ The distribution to the left is 
called the Sobol sequence and 
is one choice that seems to 
give results in higher 
dimensions. 

➤ Another approach is to just 
choose the points randomly. 
This is called Monte Carlo 
integration and we will 
discuss it later in the term.



MULTIPLE INTEGRATION

➤ We have been looking at integrals 
that are both to fixed numbers. 

➤ But we also encounter integrals 
where the limit on one is a variable: 

➤ Numerically this would lead to two 
sums, but where the second sum 
would not be to N, but instead to i 
as it steps up to N. 

➤ This would give something like the 
points you see on the left, but it 
isn’t clear this is a very good 
scheme as you can see some places 
have a lot of points while others 
have few.
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MULTIPLE INTEGRATION

➤ In higher dimensions you can all kinds of strange volumes to 
integrate over.  

➤ This can cause problems and there are various techniques to 
try and address them. 

➤ One choice, as mentioned, is Monte Carlo integration where 
points are selected randomly.   

➤ Others we won’t go in to, but if you have a case of multiple 
integration over a volume that seems complicated be aware 
that straightforward application of a grid may not be a very 
efficient method for evaluating the integral.


