
FOURIER TRANSFORMS
Ari Maller

FOURIER SERIES
➤ Fourier transforms are a basic tool of physics and

mathematics. It is also an important approach for certain
numerical problems.

➤ Fourier transforms allow us to break down functions or
signals into their component parts and analyze, smooth or
filter then, and it gives us a way to rapidly perform certain
types of calculations and solve certain differential equations.

➤ We have all learned that a periodic function f(x) defined
between 0 and L can be expressed as a Fourier series

f(x) =
1X

k=0

↵k cos
�2⇡kx

L

�
or f(x) =

1X

k=1

�k sin
�2⇡kx

L

�

FOURIER SERIES
➤ An alternative way to represent the general sin/cos series is

➤ Since the complex series includes both sine and cosine we will
use it for most of our calculations.

➤ Note that the Fourier series can only be used for periodic
functions. However, if we have a function that is not periodic
we can simply replicate it over some range and then it will be.

f(x) =
1X

k=�1
�k exp

�
i
2⇡kx

L

�

0 L−L

(xf)

➤ The coefficients γk are in general complex. The general way to
calculate them is to evaluate the integral

➤ this is zero if k’ ≠ k. So the only nonzero term in the sum
gives

➤ Given the function f(x) we can find the Fourier coefficients γk

by integration. We can also recover the function f(x) from the
coefficients by performing the sum.

Z L

0
f(x) exp

�
� i

2⇡kx

L

�
dx =

1X

k=�1
�k exp

�
i
2⇡(k0 � k)x

L

�
dx

�k =
1

L

Z L

0
f(x) exp

�
� i

2⇡kx

L

�
dx

f(x) =
1X

k=�1
�k exp

�
i
2⇡kx

L

�

DISCRETE FOURIER TRANSFORM
➤ There are many situations where the pervious integral over

f(x) can not be done analytically, either because of its
functional form, or because there is no function but just a
series of values from experiment or numerical calculations.

➤ In such cases we can evaluate the coefficients numerically, for
example using the trapezoidal rule.

➤ Here we have used the fact that f(L)=f(0) and defined xn =
nL/N. The points should be equally spaced for the trapezoidal
rule. This form is very convenient for computation since we
often know the value of a function over evenly spaced points.

�k =
1

N

N�1X

n=0

f(xn) exp
�
� i

2⇡kxn

L

�

DISCRETE FOURIER TRANSFORM
➤ This form is known as the discrete Fourier transform or DFT.

The coefficients are defined slightly differently as

➤ for no good reason, but it is the standard way. We will call ck
Fourier coefficients even though you need to divide them by N
to get the real Fourier coefficients.

➤ The discrete Fourier transform is not an approximation, it is
exact. That is the coefficients times the sine and cosine
functions will go exactly though the sampled points up to
rounding errors.

ck = N�k =
N�1X

n=0

f(xn) exp
�
� i

2⇡kxn

L

�

INVERSE DISCRETE FOURIER TRANSFORM
➤ The equation to get yn from ck is called the inverse discrete

Fourier transform or inverse DFT and given by

➤ Starting from a set of yn values one can determine the ck
values and then get back the yn values. The yn values are exact
(up to rounding error), but the function you would get does
not have to be the same as the function that gave the yn
values. That is the exactness is on the discreteness of the
transform, only at the xn values used will they agree. Multiple
different functions that have the same yn values will have the
exact same DFT.

yn =
1

N

N�1X

k=0

ck exp
�
i
2⇡kn

N

�

<latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit>

DISCRETE FOURIER TRANSFORM
➤ If our starting function is real then we gain an additional

simplification.

➤ In that case the CN-r coefficient is equal to the complex
conjugate of the cr coefficient.

➤ So we only have to calculate coefficients between 0 and N/2.
If the function f(x) is complex then we need to calculate all N
coefficients.

➤ The DFT is straightforward to calculate in Python as shown
by this example code.

CN�r = c⇤r

DFT EXAMPLE CODE

from numpy import zeros

from cmath import exp,pi

def dft(y):

 N = len(y)

 c = zeros(N//2+1, complex)

 for k in range(N//2+1):

 for n in range(N):

 c[k] += y[n]*exp(-2j*pi*k*n/N)

 return c

In Python imaginary is j not i

cmath not math because need complex math

POSITIONS OF THE SAMPLE POINTS
➤ We can shift the locations of the points where we evaluate

f(x) from xn to x’n = xn + Δ. All this will effect is the value of
the function at those points yn. The formula will be
essentially the same.

➤ So far we have been considering points starting at 0 and going
to L. This is called at Type-I DFT.

➤ Alternatively we could take the midpoints of all those points.
This is called a Type-II DFT.

➤ The values of the coefficients will change in the two cases, but
otherwise they are equivalent in that the inverse DFT will get
you back to the functions values at the points you used.

TW0-DIMENSIONAL FOURIER TRANSFORMS

➤ Functions of two variables f(x,y) can be Fourier transformed
as well. Suppose we have an M×N grid of samples ynm. We
first perform an ordinary Fourier transform on each of the M
rows.

➤ for each row m we now have N coefficients. Next we take the
lth coefficient in each of the M rows and Fourier transform
these M values again. As one equation we would have

➤ In 2D if our function is real, then the first series we only need
up to N/2 because the rest are the conjugates. However these
coefficients are complex so we need to evaluate all M.

c0ml =
N�1X

n=0

ymn exp
�
� i

2⇡ln

N

�

ckl =
M�1X

m=0

N�1X

n=0

ymn exp
⇥
� i2⇡

�km
M

+
ln

N

�⇤

PHYSICAL INTERPRETATION
➤ It is worth spending some time discussing what a Fourier

transform tells us physically about a function.

➤ The Fourier transform breaks down our function into a series
of waves at different frequencies. The coefficients tell us the
relative contribution of each frequency. A plot of the absolute
values of the coefficients, |ck|, is called a power spectrum and
it shows the relative contribution of waves of each frequency.

➤ We can also remove some of the frequencies, either filtering
high frequencies low frequencies or frequencies that
contribute little to the overall function. This signal processing
can be useful in a number of applications.

A periodic function with some noise. Taking the Fourier transform
and plotting it as a power spectrum we can see the signal is primarily
at one frequency with some power at harmonics as twice, three and
four times the fundamental frequency. We can also see white noise,
white because it has roughly the same amplitude at different
frequencies. We could filter out the noise by performing the inverse
DFT, but only for the 4 or 5 largest Fourier coefficients.

EXERCISE 7.2
➤ In the on-line resources there is a file called sunspots.txt,

which contains the observed number of sunspots on the
Sun for each month since January 1749. The file contains
two columns of numbers, the first representing the month
and the second being the sunspot number.

➤ (a) Write a program that reads the data in the file and
makes a graph of sunspots as a function of time. You
should see that the number of sunspots has fluctuated on a
regular cycle for as long as observations have been recorded.
Make an estimate of the length of the cycle in months.

➤ (b) Modify your program to calculate the Fourier transform
of the sunspot data and then make a graph of the magnitude
squared ck2 of the Fourier coefficients as a function of k also
called the power spectrum of the sunspot signal. You
should see that there is a noticeable peak in the power
spectrum at a nonzero value of k. The appearance of this
peak tells us that there is one frequency in the Fourier
series that has a higher amplitude than the others around
it-meaning that there is a large sine-wave term with this
frequency, which corresponds to the periodic wave you can
see in the original data.

➤ Find the approximate value of k to which the peak
corresponds. What is the period of the sine wave with this
value of k? You should find that the period corresponds
roughly to the length of the cycle that you estimated in
part(a).

ck = N�k =
N�1X

n=0

f(xn) exp
�
� i

2⇡kxn

L

�

MAKING SENSE OF THE POWER SPECTRUM

We can see that the data looks like

is varies on some time scale, like
~100 months.

From the power spectrum we see that the
k =0 coefficient has 10 times the power
as the next coefficient.

THE ZERO TERM
➤ The inverse transform gives us back our values of f(x) from

the Fourier coefficients:

➤ for the k=0 contribution we get

➤ the same value for all n, in other words the k=0 term is a flat
line. This is just the offset of the data from zero, it can be
removed by first subtracting this constant value from your
data.

yn =
1

N

N�1X

k=0

ck exp
�
i
2⇡kn

N

�

<latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit><latexit sha1_base64="u6edZ5Xm6faS9fKYLw3/jLI0NPc=">AAACNnicdVBBSxwxGM1oq3a1utZjLx9dBD10SRbR9SBIvXhRLHRV2FmHTDazhslkhiQjXcL8Ki/9Hd68eFBKr/4EM7qCFn0QeLz3vSTfiwspjMX4Opia/vBxZnbuU2N+4fPiUnP5y7HJS814j+Uy16cxNVwKxXtWWMlPC81pFkt+Eqd7tX9ywbURufplxwUfZHSkRCIYtV6KmgfjSMEOhImmzJHKHVYQmjI7c4ffSRW5dAdXwKIUQv67cGEsRmsCXCcsBEAKCsLcX+5DVW2tV1GzhdsYY0II1IRsbWJPtre7HdIFUlseLTTBUdS8Coc5KzOuLJPUmD7BhR04qq1gkleNsDS8oCylI973VNGMm4F7XLuCVa8MIcm1P8rCo/oy4WhmzDiL/WRG7bn536vFt7x+aZPuwAlVlJYr9vRQUkqwOdQdwlBozqwce0KZFv6vwM6pb9D6phu+hOdN4X1y3GkT3CY/N1q7PyZ1zKGv6BtaQwRtoV20j45QDzF0ia7RLboL/gQ3wd/g39PoVDDJrKBXCO4fAGYsqyk=</latexit>

yn =
1

N
c0 exp

�
i
2⇡0n

N

�
=

c0
N

<latexit sha1_base64="0fDVx+lymZ2JnWIMqxa9TMh6DoI=">AAACNnicdVDNSgMxGMz6b/2revTyYRH0UpIiWg+C6MWLomBV6JYlm2ZrMJtdkqxYln0qLz6HNy8eFPHqI5jVKio6EBhmvknyTZhKYSzG997Q8Mjo2PjEZGVqemZ2rjq/cGqSTDPeYolM9HlIDZdC8ZYVVvLzVHMah5KfhZd7pX92xbURiTqx/ZR3YtpTIhKMWicF1YN+oGAb/EhTlpMiPywAWIDB59dp7oeityogb/ipAMCgwE/cZW6oKK214ivpImU2qNZwHWNMCIGSkM0N7MjWVrNBmkBKy6GGBjgKqnd+N2FZzJVlkhrTJji1nZxqK5jkRcXPDE8pu6Q93nZU0ZibTv6+dgErTulClGh3lIV39Xsip7Ex/Th0kzG1F+a3V4p/ee3MRs1OLlSaWa7Yx0NRJsEmUHYIXaE5s7LvCGVauL8Cu6CuB+uarrgSPjeF/8lpo05wnRyv13Z2B3VMoCW0jFYRQZtoB+2jI9RCDN2ge/SInrxb78F79l4+Roe8QWYR/YD3+gYuyqp2</latexit><latexit sha1_base64="0fDVx+lymZ2JnWIMqxa9TMh6DoI=">AAACNnicdVDNSgMxGMz6b/2revTyYRH0UpIiWg+C6MWLomBV6JYlm2ZrMJtdkqxYln0qLz6HNy8eFPHqI5jVKio6EBhmvknyTZhKYSzG997Q8Mjo2PjEZGVqemZ2rjq/cGqSTDPeYolM9HlIDZdC8ZYVVvLzVHMah5KfhZd7pX92xbURiTqx/ZR3YtpTIhKMWicF1YN+oGAb/EhTlpMiPywAWIDB59dp7oeityogb/ipAMCgwE/cZW6oKK214ivpImU2qNZwHWNMCIGSkM0N7MjWVrNBmkBKy6GGBjgKqnd+N2FZzJVlkhrTJji1nZxqK5jkRcXPDE8pu6Q93nZU0ZibTv6+dgErTulClGh3lIV39Xsip7Ex/Th0kzG1F+a3V4p/ee3MRs1OLlSaWa7Yx0NRJsEmUHYIXaE5s7LvCGVauL8Cu6CuB+uarrgSPjeF/8lpo05wnRyv13Z2B3VMoCW0jFYRQZtoB+2jI9RCDN2ge/SInrxb78F79l4+Roe8QWYR/YD3+gYuyqp2</latexit><latexit sha1_base64="0fDVx+lymZ2JnWIMqxa9TMh6DoI=">AAACNnicdVDNSgMxGMz6b/2revTyYRH0UpIiWg+C6MWLomBV6JYlm2ZrMJtdkqxYln0qLz6HNy8eFPHqI5jVKio6EBhmvknyTZhKYSzG997Q8Mjo2PjEZGVqemZ2rjq/cGqSTDPeYolM9HlIDZdC8ZYVVvLzVHMah5KfhZd7pX92xbURiTqx/ZR3YtpTIhKMWicF1YN+oGAb/EhTlpMiPywAWIDB59dp7oeityogb/ipAMCgwE/cZW6oKK214ivpImU2qNZwHWNMCIGSkM0N7MjWVrNBmkBKy6GGBjgKqnd+N2FZzJVlkhrTJji1nZxqK5jkRcXPDE8pu6Q93nZU0ZibTv6+dgErTulClGh3lIV39Xsip7Ex/Th0kzG1F+a3V4p/ee3MRs1OLlSaWa7Yx0NRJsEmUHYIXaE5s7LvCGVauL8Cu6CuB+uarrgSPjeF/8lpo05wnRyv13Z2B3VMoCW0jFYRQZtoB+2jI9RCDN2ge/SInrxb78F79l4+Roe8QWYR/YD3+gYuyqp2</latexit><latexit sha1_base64="0fDVx+lymZ2JnWIMqxa9TMh6DoI=">AAACNnicdVDNSgMxGMz6b/2revTyYRH0UpIiWg+C6MWLomBV6JYlm2ZrMJtdkqxYln0qLz6HNy8eFPHqI5jVKio6EBhmvknyTZhKYSzG997Q8Mjo2PjEZGVqemZ2rjq/cGqSTDPeYolM9HlIDZdC8ZYVVvLzVHMah5KfhZd7pX92xbURiTqx/ZR3YtpTIhKMWicF1YN+oGAb/EhTlpMiPywAWIDB59dp7oeityogb/ipAMCgwE/cZW6oKK214ivpImU2qNZwHWNMCIGSkM0N7MjWVrNBmkBKy6GGBjgKqnd+N2FZzJVlkhrTJji1nZxqK5jkRcXPDE8pu6Q93nZU0ZibTv6+dgErTulClGh3lIV39Xsip7Ex/Th0kzG1F+a3V4p/ee3MRs1OLlSaWa7Yx0NRJsEmUHYIXaE5s7LvCGVauL8Cu6CuB+uarrgSPjeF/8lpo05wnRyv13Z2B3VMoCW0jFYRQZtoB+2jI9RCDN2ge/SInrxb78F79l4+Roe8QWYR/YD3+gYuyqp2</latexit>

THE ZERO TERM

THE K > 0 TERMS

Removing the k=0 term we see the
next highest term is k = 23. If we
inverse Fourier transform that term
we get a simple sine curve. Note that
its period is very similar to the period
in our data set.

REMOVING THE K=0 TERM

There are about 10 terms with
amplitudes that aren’t an order of
magnitude smaller than k=23. If we
invert them we get the plot below. If
we keep the first 100 terms we get the
plot to the right.

DISCRETE COSINE AND SINE TRANSFORMS
➤ So far we have been discussing the complex version of the Fourier

series, but there is some advantages to thinking about just using
the cosines.

➤ Cosines will only fit symmetric functions, but it is easy to construct
a symmetric function by mirroring a function and then repeating.

DISCRETE COSINE AND SINE TRANSFORMS

➤ While the sine can be used also, because it goes to zero at the
end points it is often a poor match to functions of interest.

➤ The formula will look different depending if we include the
endpoints 0 and L (Type-1) or if we take the midpoints
(Type-2). For Type-1 we get

➤ Notice the sum is only to N/2-1 because the function is
symmetric. For the Type-2 points we instead get

➤ These are referred to as discrete cosine transform or DCT. It is
often preferable for data that is not periodic.

ak = 2

N/2�1X

n=0

yn cos
�2⇡k(n+ 1/2)

N

�

ck = y0 + yN/2 cos
�2⇡k(N/2)

N

�
+ 2

N/2�1X

n=1

yn cos
�2⇡kn

N

�

TECHNOLOGICAL APPLICATIONS
➤ While the DFT may seem like something only of special

interest to mathematicians and physicist it, it is widely used in
common technology.

➤ For example you are probably aware of the image format JPEG.
One way to store the information in a image would be to store
a value for each pixel in the image. A jpeg performs a 2D
Fourier transform of an image and stores the coefficients. It
also doesn’t keep some of the smaller coefficients, it this way
making the file size much smaller.

➤ When you load an image your computer performs the inverse
DFT to get the image back. There is some information loss
because the value of each pixel is not stored, but usually one
can’t tell any difference by eye.

TECHNOLOGICAL APPLICATIONS
➤ The MPEG format does the same thing but for movies.

➤ A similar thing is done for music with the MP3 format, though
now the DFT is done in time instead of spatially. The MP3
algorithm is more clever choosing which coefficients to discard
based on knowledge of what the human ear can and can not
hear.

➤ For example if there are loud low frequency sounds in a piece
of music the ear has a harder time detecting high frequency
sounds. So the MP3 format doesn’t keep those high frequency
coefficients.

➤ Essentially the entire digital audio and video economy depends
on discrete Fourier transforms.

FAST FOURIER TRANSFORMS
➤ In the DFT we have to perform a sum over N-1 values for

1/2N+1 distinct coefficients. This is N(1/2N+1) ~ 1/2N2
calculations.

➤ This is not good scaling. If we want to limit ourselves to a
billion calculations then we can only have N~45000 sample
points. This is only about 1 second of music at today’s
sampling.

➤ We are going to need a faster way of performing Fourier
transforms if we want to use them on large images, videos
and audio files, not to mention computational physics. Luckily
Gauss found such a way in 1805 when he was 28 years old.

FAST FOURIER TRANSFORM
➤ The fast Fourier transform (FFT) is simplest when the

number of sample points is a power of two. So let’s consider
N= 2m.

➤ We can break the sum of the DFT into a sum over even n and
a sum over odd n. The sum of the even terms is then

➤ but this is just another expression for a Fourier transform,
now but for half the number of points. Similarly the odd
terms can be written as

Ek =

1
2N�1X

r=0

y2r exp
�
� i

2⇡k(2r)

N

�
=

1
2N�1X

r=0

y2r exp
�
� i

2⇡kr
1
2N

�

1
2N�1X

r=0

y2r+1 exp
�
� i

2⇡k(2r + 1)

N

�
= e�i2⇡k/N

1
2N�1X

r=0

y2r+1 exp
�
� i

2⇡kr
1
2N

�
= e�i2⇡k/NQk

FAST FOURIER TRANSFORM
➤ So we can express the Fourier coefficients as

➤ The coefficients are just give by the sum of two coefficients
determined from a Fourier transforms with half as many
points. Plus a term called a twiddle factor.

➤ But Ek and Qk can just be expressed as the sum of two other
Fourier transforms, which can also be broken into two and so
on until Fourier transform has only one term. At which point
the transform is trivial.

ck = Ek + e�i2⇡k/NQk

c0 =
0X

n=0

yne
0 = y0

FAST FOURIER TRANSFORM
➤ So in practice the fast Fourier transform works by evaluating

the coefficient for a single point. Then for two points, four, …
until you get the transform for the whole function.

➤ Thus one ends up needing Nlog2N calculations instead of
1/2N2. This ends up making a big difference. If we have a
million sample points the brute force way would require
5×1011 calculations while the fast Fourier transform can do it
in 2×107.

➤ While we have described the algorithm in the sample number
is 2m, it can also be done for any N, but the algebra is more
complicated.

STANDARD FUNCTIONS FOR FFT
➤ Of course since the FFT is so important in computer science

there will already exist an implementation in any computer
language.

➤ In Python these live in numpy.fft. The function rfft() will
return the coefficients for a set of real sample points while
fft() will perform the calculation for a complex set of sample
points.

➤ Note that the array returned by rfft() will only have N/2+1
elements since numpy knows you can get the rest by
calculating the complex conjugates.

➤ To perform the inverse FFT you can use irfft() or ifft().

