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FOURIER SERIES 
➤ Fourier transforms are a basic tool of physics and 

mathematics. It is also an important approach for certain 
numerical problems.


➤ Fourier transforms allow us to break down functions or 
signals into their component parts and analyze, smooth or 
filter then, and it gives us a way to rapidly perform certain 
types of calculations and solve certain differential equations.


➤ We have all learned that a periodic function f(x) defined 
between 0 and L can be expressed as a Fourier series 
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FOURIER SERIES
➤ An alternative way to represent the general sin/cos series is


➤ Since the complex series includes both sine and cosine we will 
use it for most of our calculations.


➤ Note that the Fourier series can only be used for periodic 
functions. However, if we have a function that is not periodic 
we can simply replicate it over some range and then it will be.
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➤ The coefficients γk are in general complex. The general way to 
calculate them is to evaluate the integral 


➤ this is zero if k’ ≠ k. So the only nonzero term in the sum 
gives


➤ Given the function f(x) we can find the Fourier coefficients γk  

by integration. We can also recover the function f(x) from the 
coefficients by performing the sum.
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DISCRETE FOURIER TRANSFORM
➤ There are many situations where the pervious integral over 

f(x) can not be done analytically, either because of its 
functional form, or because there is no function but just a 
series of values from experiment or numerical calculations.


➤ In such cases we can evaluate the coefficients numerically, for 
example using the trapezoidal rule.  


➤ Here we have used the fact that f(L)=f(0) and defined xn = 
nL/N. The points should be equally spaced for the trapezoidal 
rule.  This form is very convenient for computation since we 
often know the value of a function over evenly spaced points. 
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DISCRETE FOURIER TRANSFORM 
➤ This form is known as the discrete Fourier transform or DFT. 

The coefficients are defined slightly differently as 


➤ for no good reason, but it is the standard way. We will call ck 
Fourier coefficients even though you need to divide them by N 
to get the real Fourier coefficients.


➤ The discrete Fourier transform is not an approximation, it is 
exact. That is the coefficients times the sine and cosine 
functions will go exactly though the sampled points up to 
rounding errors.
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INVERSE DISCRETE FOURIER TRANSFORM
➤ The equation to get yn from ck is called the inverse discrete 

Fourier transform or inverse DFT and given by


➤ Starting from a set of yn values one can determine the ck 
values and then get back the yn values. The yn values are exact 
(up to rounding error), but the function you would get does 
not have to be the same as the function that gave the yn 
values. That is the exactness is on the discreteness of the 
transform, only at the xn values used will they agree. Multiple 
different functions that have the same yn values will have the 
exact same DFT.
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DISCRETE FOURIER TRANSFORM
➤ If our starting function is real then we gain an additional 

simplification. 


➤ In that case the CN-r coefficient is equal to the complex 
conjugate of the cr  coefficient.


➤ So we only have to calculate coefficients between 0 and N/2. 
If the function f(x) is complex then we need to calculate all N 
coefficients. 


➤ The DFT is straightforward to calculate in Python as shown 
by this example code.

CN�r = c⇤r



DFT EXAMPLE CODE 

from numpy import zeros


from cmath import exp,pi


def dft(y):


    N = len(y)


    c = zeros(N//2+1, complex)


    for k in range(N//2+1):


         for n in range(N):


               c[k] += y[n]*exp(-2j*pi*k*n/N)


    return c


In Python imaginary is j not i

cmath not math because need complex math



POSITIONS OF THE SAMPLE POINTS
➤ We can shift the locations of the points where we evaluate 

f(x) from xn to x’n = xn + Δ.  All this will effect is the value of 
the function at those points yn.  The formula will be 
essentially the same. 


➤ So far we have been considering points starting at 0 and going 
to L. This is called at Type-I DFT.


➤ Alternatively we could take the midpoints of all those points. 
This is called a Type-II DFT. 


➤ The values of the coefficients will change in the two cases, but 
otherwise they are equivalent in that the inverse DFT will get 
you back to the functions values at the points you used.



TW0-DIMENSIONAL FOURIER TRANSFORMS

➤ Functions of two variables f(x,y) can be Fourier transformed 
as well. Suppose we have an M×N grid of samples ynm. We 
first perform an ordinary Fourier transform on each of the M 
rows.


➤ for each row m we now have N coefficients. Next we take the 
lth coefficient in each of the M rows and Fourier transform 
these M values again.  As one equation we would have 


➤ In 2D if our function is real, then the first series we only need 
up to N/2 because the rest are the conjugates. However these 
coefficients are complex so we need to evaluate all M.
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PHYSICAL INTERPRETATION 
➤ It is worth spending some time discussing what a Fourier 

transform tells us physically about a function.


➤ The Fourier transform breaks down our function into a series 
of waves at different frequencies. The coefficients tell us the 
relative contribution of each frequency.  A plot of the absolute 
values of the coefficients, |ck|, is called a power spectrum and 
it shows the relative contribution of waves of each frequency.


➤ We can also remove some of the frequencies, either filtering 
high frequencies low frequencies or frequencies that 
contribute little to the overall function. This signal processing 
can be useful in a number of applications.



A periodic function with some noise. Taking the Fourier transform 
and plotting it as a power spectrum we can see the signal is primarily 
at one frequency with some power at harmonics as twice, three and 
four times the fundamental frequency.  We can also see white noise, 
white because it has roughly the same amplitude at different 
frequencies. We could filter out the noise by performing the inverse 
DFT, but only for the 4 or 5 largest Fourier coefficients.   



EXERCISE 7.2 
➤ In the on-line resources there is a file called sunspots.txt, 

which contains the observed number of sunspots on the 
Sun for each month since January 1749.  The file contains 
two columns of numbers, the first representing the month 
and the second being the sunspot number.


➤ (a) Write a program that reads the data in the file and 
makes a graph of  sunspots as a function of time.  You 
should see that the number of sunspots has fluctuated on a 
regular cycle for as long as observations have been recorded.  
Make an estimate of the length of the cycle in months.


➤ (b) Modify your program to calculate the Fourier transform 
of the sunspot data and then make a graph of the magnitude 
squared ck2 of the Fourier coefficients as a function of k also 
called the power spectrum of the sunspot signal.  You 
should see that there is a noticeable peak in the power 
spectrum at a nonzero value of k.  The appearance of this 
peak tells us that there is one frequency in the Fourier 
series that has a higher amplitude than the others around  
it-meaning that there is a large sine-wave term with this 
frequency, which corresponds to the periodic wave you can 
see in the original data.


➤ Find the approximate value of k to which the peak 
corresponds. What is the period of the sine wave with this 
value of k?  You should find that the period corresponds 
roughly to the length of the cycle that you estimated in 
part(a).

ck = N�k =
N�1X

n=0

f(xn) exp
�
� i

2⇡kxn

L

�



MAKING SENSE OF THE POWER SPECTRUM

We can see that the data looks like


is varies on some time scale, like 
~100 months.

From the power spectrum we see that the 
k =0 coefficient has 10 times the power 
as the next coefficient.



THE ZERO TERM
➤ The inverse transform gives us back our values of f(x) from 

the Fourier coefficients: 


➤ for the k=0 contribution we get


➤ the same value for all n, in other words the k=0 term is a flat 
line. This is just the offset of the data from zero, it can be 
removed by first subtracting this constant value from your 
data.
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THE ZERO TERM



THE K > 0 TERMS

Removing the k=0 term we see the 
next highest term is k = 23. If we 
inverse Fourier transform that term 
we get a simple sine curve. Note that 
its period is very similar to the period 
in our data set.



REMOVING THE K=0 TERM

There are about 10 terms with 
amplitudes that aren’t an order of 
magnitude smaller than k=23. If we 
invert them we get the plot below. If 
we keep the first 100 terms we get the 
plot to the right.



DISCRETE COSINE AND SINE TRANSFORMS
➤ So far we have been discussing the complex version of the Fourier 

series, but there is some advantages to thinking about just using 
the cosines.  


➤ Cosines will only fit symmetric functions, but it is easy to construct 
a symmetric function by mirroring a function and then repeating.



DISCRETE COSINE AND SINE TRANSFORMS

➤ While the sine can be used also, because it goes to zero at the 
end points it is often a poor match to functions of interest.


➤ The formula will look different depending if we include the 
endpoints 0 and L (Type-1) or if we take the midpoints 
(Type-2).  For Type-1 we get 


➤ Notice the sum is only to N/2-1 because the function is 
symmetric.  For the Type-2 points we instead get 


➤ These are referred to as discrete cosine transform or DCT.  It is 
often preferable for data that is not periodic. 
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TECHNOLOGICAL APPLICATIONS
➤ While the DFT may seem like something only of special 

interest to mathematicians and physicist it, it is widely used in 
common technology.


➤ For example you are probably aware of the image format JPEG. 
One way to store the information in a image would be to store 
a value for each pixel in the image.  A jpeg performs a 2D 
Fourier transform of an image and stores the coefficients. It 
also doesn’t keep some of the smaller coefficients, it this way 
making the file size much smaller. 


➤ When you load an image your computer performs the inverse 
DFT to get the image back. There is some information loss 
because the value of each pixel is not stored, but usually one 
can’t tell any difference by eye.



TECHNOLOGICAL APPLICATIONS
➤ The MPEG format does the same thing but for movies. 


➤ A similar thing is done for music with the MP3 format, though 
now the DFT is done in time instead of spatially. The MP3 
algorithm is more clever choosing which coefficients to discard 
based on knowledge of what the human ear can and can not 
hear.


➤ For example if there are loud low frequency sounds in a piece 
of music the ear has a harder time detecting high frequency 
sounds. So the MP3 format doesn’t keep those high frequency 
coefficients.  


➤ Essentially the entire digital audio and video economy depends 
on discrete Fourier transforms.



FAST FOURIER TRANSFORMS
➤ In the DFT we have to perform a sum over N-1 values for 

1/2N+1 distinct coefficients. This is N(1/2N+1) ~ 1/2N2 
calculations.


➤ This is not good scaling. If we want to limit ourselves to a 
billion calculations then we can only have N~45000 sample 
points. This is only about 1 second of music at today’s 
sampling.  


➤ We are going to need a faster way of performing Fourier 
transforms if we want to use them on large images, videos 
and audio files, not to mention computational physics. Luckily 
Gauss found such a way in 1805 when he was 28 years old.



FAST FOURIER TRANSFORM
➤ The fast Fourier transform (FFT) is simplest when the 

number of sample points is a power of two. So let’s consider 
N= 2m.


➤ We can break the sum of the DFT into a sum over even n and 
a sum over odd n. The sum of the even terms is then


➤ but this is just another expression for a Fourier transform, 
now but for half the number of points. Similarly the odd 
terms can be written as 
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FAST FOURIER TRANSFORM
➤ So we can express the Fourier coefficients as 


➤ The coefficients are just give by the sum of two coefficients 
determined from a Fourier transforms with half as many 
points. Plus a term called a twiddle factor.


➤ But Ek and Qk can just be expressed as the sum of two other 
Fourier transforms, which can also be broken into two and so 
on until Fourier transform has only one term. At which point 
the transform is trivial.
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FAST FOURIER TRANSFORM
➤ So in practice the fast Fourier transform works by evaluating 

the coefficient for a single point. Then for two points, four, … 
until you get the transform for the whole function.


➤ Thus one ends up needing Nlog2N calculations instead of 
1/2N2.  This ends up making a big difference. If we have a 
million sample points the brute force way would require 
5×1011 calculations while the fast Fourier transform can do it 
in 2×107.


➤ While we have described the algorithm in the sample number 
is 2m, it can also be done for any N, but the algebra is more 
complicated.



STANDARD FUNCTIONS FOR FFT
➤ Of course since the FFT is so important in computer science 

there will already exist an implementation in any computer 
language. 


➤ In Python these live in numpy.fft. The function rfft() will 
return the coefficients for a set of real sample points while 
fft() will perform the calculation for a complex set of sample 
points.


➤ Note that the array returned by rfft() will only have N/2+1 
elements since numpy knows you can get the rest by 
calculating the complex conjugates.


➤ To perform the inverse FFT you can use irfft() or ifft().


