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FIRST ORDER DIFFERENTIAL EQUATIONS

➤ One of the main uses of numerical techniques is for the 
solving of differential equations which are notoriously difficult 
to solve analytically. An ordinary differential equation is 
something of the form  

➤ This can be solved by separation of variables. But what if 
instead we had something like the following 

➤ this is not separable nor is it linear. Nonlinear equations can 
rarely be solved analytically, but numerically it doesn’t matter 
if the equation is linear or not.
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FIRST ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE
➤ The general form of a first order one variable differential 

equation is 

➤ Note we have been choosing t as the independent variable. In 
physics we are often interested in the time evolution of a 
system, but the independent variable could be spatial or 
something else. 

➤ To calculate a solution for a differential equation we also need 
a boundary condition, the value of x at some value of t. Like 
x(0)=0. We will assume we are given boundary conditions for 
the solutions we discuss.
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EULER’S METHOD
➤ If we have a differential equation and boundary condition at 

x(t) we can write the value of x a short time later using a 
Taylor expansion. 

➤ To first order we now have a way to calculate x(t). Start with 
our boundary condition, then get x(t’)=x(t+h)=x(t)+h 
f(x,t). Then get x(t’’)=x(t’+h) until  you have covered the 
range of t you want to cover. 

➤ In general Euler’s method is not bad; however, we never 
actually use it because with a little extra effort we can get a 
method, Runge-Kutta that is more accurate and often faster.
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EULER’S METHOD
➤ The error in Euler’s method goes as 1/2 h2 d2x/dt2, but this is 

for each step. If we are performing our calculation from a to b 
with step size h, that that requires N=(b-a)/h steps.  The 
total error then would be: 

➤ The total error goes as h instead of h2.  This means that if we 
choose h small enough we should be able to get reasonable 
results, but h might have to be very small and therefore N 
very large.  If h is too small we have to worry about roundoff 
errors.
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EXERCISE 8.1 (MODIFIED)
➤ Substituting the second equation into the third, then 

substituting the result into the first equation, we find that 

➤ Write a program to solve this equation for Vout(t) using 
Euler's method when in the input signal is a square-wave 
with frequency 1 and amplitude 1: 

➤ Vin(t) = 1 if np.floor(2t) is even, -1 if np.floor(2t) is odd 

➤ Use the program to make plots of the output of the filter 
circuit from t=0 to t=10 when RC=0.01, 0.1, and 1, with 
initial condition Vout(0)=0.  You will have to make a 
decision about what value of h to use in your calculation.  
Small values give more accurate results, but the program 
will take longer to run.  Try a variety of different values and 
choose one for your final calculations that seems sensible 
to you. 

➤ Based on the graphs produced by your program, describe 
what you see and explain what the circuit is doing. 

➤ A program similar to the one you wrote is running inside 
most stereos and music players, to create the effect of the 
“bass” control.  In the old days, the bass control on a stereo 
would have been connected to a real electronic low-pass 
filter in the amplifier circuitry, but these days there is just a 
computer processor that simulates the behavior of the filter 
in a manner similar to your program.
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➤ Here is a simple electronic circuit with one 
resistor and one capacitor: This circuit acts as 
a low-pass filter: you send a signal in on the 
left and it comes out filtered on the right. 

➤ Using Ohm's law and the capacitor law and 
assuming that the output load has very high 
impedance, so that a negligible amount of 
current flows through it, we can write down 
the equations governing this circuit as 
follows.  Let I be the current that flows 
through R and into the capacitor, and let Q 
be the charge on the capacitor.  Then:

IR = Vin � Vout , Q = CVout , I =
dQ

dt
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RUNGE-KUTTA
➤ We can think of Euler’s 

method graphically. Then 
what we did was take the 
slope at the point t, and 
then used that line to 
extrapolate what the 
function would be at t+h. 

➤ The idea of Runge-Kutta is 
that instead we calculate 
the slope at t+h/2 and 
then extrapolate this slope 
to get x(t+h). This usually 
gives a better estimate.
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RUNGE-KUTTA
➤ To see how accurate such a method would be let us again perform 

a Taylor expansion, but now around x(t+h/2) 

➤ we can also derive an expression for x(t)  

➤ if we subtract these two equations we get  

➤ This is an expression for x(t+h) that is accurate to h2, the error is 
O(h3). Thus it is a second order scheme instead of first order. 
Similar to how Simpson’s rule improved over the trapezoidal rule 
by an order.
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2ND ORDER RUNGE - KUTTA
➤ The only problem with this expression is that it includes the 

value of the function evaluated at t+h/2 which we don’t 
know.  We get around this by using Euler’s method to 
estimate x(t+h/2) and then using that estimate in the 2nd 
order Runge-Kutta formula to get x(t+h). 

➤ So a 2nd order Runge-Kutta works in the following way.  

➤ Euler’s method gives us a first stab at the solution and then 
we use that for our better guess.
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2ND ORDER RUNGE-KUTTA
➤ The method described above is called 2nd order Runge-Kutta. 

Note that the order refers to a single step, when we add up N 
steps we expect the error to increase by one order. 

➤ However, we used Euler’s method in order to get the value as 
h/2 and Euler’s method is first order.  You can show that this 
additional error only contributes the third order so the method 
is still 2nd order.  

➤ However, there is no need to stick with 2nd order. We can 
perform more Taylor series around more points and cancel out 
terms till we have a scheme with the accuracy that we desire. 
In fact 4th order Runge-Kutta is usually considered the ‘best’ 
choice.



4TH ORDER RUNGE-KUTTA
➤ Fourth order Runge-Kutta is considered the gold standard for 

solving differential equations.  That is it is often considered 
the right compromise between accuracy and complexity to 
program.   

➤ Performing the Taylor expansions and algebra what one gets 
at the end is the following algorithm. 
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Solutions calculated using 2nd order Runge-Kutta on the left and 4th 
order on the right using 10,20,50, and 100 steps. You can see by 20 
steps one has a reasonably good approximation to the differential 
equation.  One thing to note about Runge-Kutta, the method is so 
accurate that if you make a mistake in your coding of the algorithm, it 
may not at all be obvious. Thus one must take extra care in coding it up.



EXERCISE 8.1
➤ Substituting the second equation into the third, then 

substituting the result into the first equation, we find that 

➤ Write a program to solve this equation for Vout(t) using the 
fourth-order Runge-Kutta method when in the input signal 
is a square-wave with frequency 1 and amplitude 1: 

➤ Vin(t) = 1 if np.floor(2t) is even, -1 if np.floor(2t) is odd 

➤ Use the program to make plots of the output of the filter 
circuit from t=0 to t=10 when RC=0.01, 0.1, and 1, with 
initial condition Vout(0)=0.  You will have to make a 
decision about what value of h to use in your calculation.  
Small values give more accurate results, but the program 
will take longer to run.  Try a variety of different values and 
choose one for your final calculations that seems sensible 
to you. 

➤ Based on the graphs produced by your program, describe 
what you see and explain what the circuit is doing. 

➤ A program similar to the one you wrote is running inside 
most stereos and music players, to create the effect of the 
“bass” control.  In the old days, the bass control on a stereo 
would have been connected to a real electronic low-pass 
filter in the amplifier circuitry, but these days there is just a 
computer processor that simulates the behavior of the filter 
in a manner similar to your program.
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➤ Here is a simple electronic circuit with one 
resistor and one capacitor: This circuit acts as 
a low-pass filter: you send a signal in on the 
left and it comes out filtered on the right. 

➤ Using Ohm's law and the capacitor law and 
assuming that the output load has very high 
impedance, so that a negligible amount of 
current flows through it, we can write down 
the equations governing this circuit as 
follows.  Let I be the current that flows 
through R and into the capacitor, and let Q 
be the charge on the capacitor.  Then:

IR = Vin � Vout , Q = CVout , I =
dQ

dt
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EXAMPLE 8.3 RK4.PY
from math import sin 

from numpy import arange 

def f(x,t): 

    return -x**3 + sin(t) 

a = 0.0 

b = 10.0 

N = 10 

h = (b-a)/N 

tpoints = arange(a,b,h) 

xpoints = [] 

x = 0.0 

for t in tpoints: 

    xpoints.append(x) 

    k1 = h*f(x,t) 

    k2 = h*f(x+0.5*k1,t+0.5*h) 

    k3 = h*f(x+0.5*k2,t+0.5*h) 

    k4 = h*f(x+k3,t+h) 

    x += (k1+2*k2+2*k3+k4)/6



SOLUTIONS OVER INFINITE RANGES
➤ So we now have a good technique for solving ODEs. However, 

if we want to solve our ODE out to t equals infinity then we 
are out of luck, because we can never solve an infinite number 
of steps h. 

➤ To deal with this problem we use the same approach as when 
we needed to integrate functions out to infinity, a suitable 
change of variables.  

➤ If we define u= t/(1+t) then when t->∞ u -> 1. Using the 
chain rule on dx/dt=f(x,t) gives.
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SOLUTIONS OVER INFINITE RANGES
➤ But this is just an ordinary differential equation, but now we 

only want to evaluate it out to 1.0. If we define  

➤ then we just have  

➤ solving this will give us x(u) which we can then map back 
using u(t) to x(t). 

➤ There are other changes of variables besides the one shown 
here. Good choices can make the function g(x,u) simpler and 
easier to work with. Or make the solution more accurate in a 
region of interest.

g(x, u) = (1� u)�2f(x,
u
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dx
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DIFFERENTIAL EQUATIONS WITH MORE THAN ONE VARIABLE
➤ So far we have considered ODEs with only one dependent 

variable. But there are plenty of situations in physics where 
one has more than one dependent variable.  

➤ In these cases we have simultaneous differential equations, 
where the derivatives can depend on any of the variables.  For 
example,   

➤ Note there is only one dependent variable, t. There are still 
ordinary differential equations, not partial differential 
equations.

dx

dt
= xy � x

dy

dt
= y � xy � sin2 !t



DIFFERENTIAL EQUATIONS WITH MORE THAN ONE VARIABLE
➤ A general form for two first order differential equation is  

➤ for an arbitrary number of variables we could write this in 
vector form  

➤ solving these simultaneous differential equation analytic is 
likely to be very hard, but numerical it is really just the same 
Runge-Kutta scheme. We perform the Taylor expansion  

➤ Thus we get the same expressions for Euler’s method and 
Runge-Kutta the only difference being we have a vector of 
equations at each step instead of just one.
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dr
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SECOND ORDER DIFFERENTIAL EQUATIONS 
➤ We have been discussing first-order differential equations, but 

first-order equations are rare in physics. Many if not most of 
the differential equations in physics are second order. 

➤ Let’s consider the simpler case of only one dependent 
variable. Then a second order differential equation would look 
like  

➤ Now lets define a new quantity y where  

➤ But now you’ll notice that our second-order equation is now 
two first order equations which we have already discussed 
how to solve.
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HIGHER ORDER DIFFERENTIAL EQUATIONS 
➤ The same trick can be used for any order of differential 

equation.  For example a third order equation  

➤ we define two new variables, y and z to get  

➤ This can be generalized to more than one dependent variables 
simply by performing the same action but on the vectors.

d3x

dt3
= f(x,

dx

dt
,
d2x

dt2
, t)

dx

dt
= y

dy

dt
= z

dz

dt
= f(x, y, z, t)

d2r

dt
= f(r,

r

dt
, t)

dr

dt
= s

ds

dt
= f(r, s, t)



EXAMPLE 8.6 THE NONLINEAR PENDULUM
➤ Let’s consider the pendulum which we generally treat as 

linear, but in reality in nonlinear. Say we have a pendulum 
with a length l and a mass m at the end of it. The equation of 
motion for the pendulum will be  

➤ a second order differential equation. Now let us use our trick 

➤ we now have two first-order equations.  So let’s combine 
them into vectors, r=(θ,ω). The f will be the vector function 
that acts on them.
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➤ We can code up f as the following: 

def f(r,t): 

    theta=r[0] 

    omega=r[1] 

    ftheta = omega 

    fomega = -(g/l)*sin(theta) 

    return np.array([ftheta,fomega],float) 



EXERCISE 8.4
➤ Write a program to solve the 

two first-order equations, 
using the fourth-order 
Runge--Kutta method for a 
pendulum with a 10 cm arm.  
Use your program to calculate 
the angle θ of displacement 
for several periods of the 
pendulum when it is released 
from a standstill at θ =179° 
from the vertical.  Make a 
graph of θ as a function of 
time.



VARYING THE STEP SIZE
➤ So far in all of our discussion we have taken the step size, h, to 

be fixed. But what if our function looked like the one below.

t

x

➤ We would need 
very small step 
sizes to resolve 
the drop in the 
middle part. But 
those steps would 
be over kill for the 
rest of the 
function.



ADAPTIVE STEP SIZE
➤ The basic idea of adaptive step size is to very the step size 

such that the error in each step is roughly the same. 

➤ In practice the adaptive step size method has two parts. First 
we have to estimate the error on our steps and then we 
compare the error to the accuracy we would like to have. 

➤ Let’s look at how this would work for 4th order Runge-Kutta. 

➤ We start by choosing an initial value for h and make two 
steps, x(t+h) and x(t+2h).  

➤ Then we make the same evaluation in just one step. By 
comparing the results we get as estimate of the error.



ADAPTIVE STEP SIZE
➤ The method is accurate to fourth order so we expect the 

error to go as h5. 

➤ If we make two steps the error will be roughly 2ch5. With 
one step twice as big the error would be c(2h)5 = 32ch5.

hh

2h

t t + 2h

➤ So the difference between our 
two estimates, x1 - x2 = 30ch5. 

➤ The error ε=ch5 would then be

✏ =
1

30
(x1 � x2)



ADAPTIVE STEP SIZE
➤ But we still don’t know what the correct step size is.  Let us 

take the correct step size to be h’. Then from our formula 

➤ Let the target accuracy for our calculation be δ, then the 
accuracy for each step would need to be h’δ. We want the 
value of h’ so that the actual accuracy equals the target 
accuracy or  

➤ solving for h’ gives  

➤ and we now have a formula that gives us h’ for a trial h.
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ADAPTIVE STEP SIZE ALGORITHM

1. First perform two steps of size h and one step from the same 
starting point of size 2h. This gives two estimates of x(t+2h), 
x1 and x2. 

2. Calculate the ratio  

3. If greater than one then are accuracy is better than our target 
accuracy so keep the value of x1, use formula to get correct 
larger h’ step size and move on starting again with step 1. 

4. IF less than one then plug into previous equation to get 
correct step size h’ and use that to determine x(t+h’). The 
move on starting again at step 1.

⇢ =
30h�

|x1 � x2|



ADAPTIVE STEP SIZE
➤ Note it is possible by bad luck that x1 will equal x2, making h’ 

infinite or close to infinite. Commonly, one places an upper 
limit on h’ so that one ignores the calculated value if it 
becomes so large that it seems problematic. 

➤ A common rule of thumb is to never let it increase by more 
than a factor of two between steps. 

➤ One might think that requiring a repeat if the accuracy in one 
step is large as being overly cautious, it is after all only one 
step.  But errors add, so if a thousand steps had an error that 
was too big, that may significantly increase the error above 
the targeted amount.



ADAPTIVE STEP SIZE FOR MULTIPLE EQUATIONS
➤ If we have multiple equations the derivation can be duplicated 

to show we get  

➤ The only complication is in what accuracy we want.  We might 
want the sum of the square of the errors  

➤ However it is a 2nd order differential equation where we have 
simply defined y=dx/dt then we might only care about the 
error in x and not the error in y at all. 

➤ So with multiple equations some thought as to the accuracy of 
what is needed in determining adaptive step sizes.
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Adaptive step size calculation of the nonlinear pendulum we looked at 
earlier. As one can see the steps are more finely spaced where the 
function changes quickly.  



OTHER METHODS
➤ Leapfrog Method 

➤ Verlet Method 

➤ Modified Midpoint Method 

➤ Burlisch-Stoer Method



LEAPFROG METHOD
➤ The leapfrog method is very similar to Runge-Kutta, but has 

certain advantages for certain problems.  

➤ In Runge-Kutta we evaluate x half way to wear we want and 
then use that to go the full step. 

➤ The leapfrog method instead uses the previous half step to 
calculate the next 3/2h step.
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The top figure shows the Runge-Kutta method where after each step 
one uses a half step to calculate the next step.  In the leapfrog method 
one takes a full step from the starting half step and uses each of those 
middle steps to evaluate the full steps.



LEAPFROG METHOD
➤ This method can be extended to multiple variables and 

functions just like Runge-Kutta and do higher order 
derivatives.  So the obvious question is what do we gain over 
Runge-Kutta by using the leapfrog method. 

➤ The leapfrog method has two significant features that make it 
interesting: 

1. The method is time-reversal symmetric. This can be useful 
for physics problems where energy conservation is 
important. 

2. The error is even in step size h, which makes it an ideal 
starting point for Richardson extrapolation.



TIME REVERSAL SYMMETRY
➤ The leapfrog method is time symmetric because if we started 

at some point and evaluated forward in time to some t’ and 
then applied the algorithm in reverse with step size -h we 
would end up where we started (aside from rounding error) 

➤ This is not true for 2nd order Runge-Kutta, if you perform the 
algorithm in reverse each step with have errors of O(h3) 
compared to what you got in the forward direction. 

➤ Why is time reversal symmetry important, because if you 
have a system that should conserve energy, numerical errors 
will cause the energy to drift. But if your solver is time 
symmetric, then the energy will be conserved. 
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ENERGY CONSERVATION WITH LEAPFROG METHOD
➤ It is important to understand how energy conservation works with 

the leapfrog method. 

➤ First energy is not conserved, it will vary during the calculation 
because of numerical errors. 

➤ The energy will only be conserved after the completion of a periodic 
event. That is an event that you could go forward to get to the next 
one, or backward to get to the previous one. This is the only time 
where the energy in conserved because of the time symmetry.  

➤ However, if these conditions are met then the energy will return to 
the same value every period which can prevent drifts away from the 
original energy.  If calculating over many many cycles this can 
greatly increase accuracy.



VERLET METHOD
➤ Suppose we want to use the leapfrog method to solve the 

equations of motion of a system: 

➤ We can solve this in our usual way 

➤ Now instead of our normal approach of creating a vector let 
us just write  

➤ Notice that x only depends on integer h while v only depends 
on 1/2 integer h.  So in this case that is an improvement over 
the vector method.

d2x

dt2
= f(x, t)

dx
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= v

df

dt
= f(x, t)

x(t+ h) = x(t) + hv(t+
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2
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1

2
h) + hf(x(t+ h), t+ h)



VERLET METHOD
➤ This simplification only works for equations of motion or 

differential equations that have this special structure where the 
right-hand side of the first equation depends on v but not on x 
and the right-hand side of the second equation depends on x 
and not on v. This situation is not unusual in physics. 

➤ One minor problem is that if you want to calculate some 
quantity the depends on x and v like potential energy you don’t 
know both of them at the same step. You can however calculate 
v(t+h) from v(t+h/2) like this. 

➤ This method is called the Verlet method. Putting the equations 
together one gets.

v(t+ h) = v(t+
1

2
h) +

1

2
hf(x(t+ h), t+ h)



VERLET METHOD 
➤ If  

➤ then defining v=dr/dt. 

➤ The 3rd equation is only needed if you want to know both r 
and v at t+h.  And of course t+3/2h = t’ + 1/2h so one can 
keep stepping forward.
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EXERCISE 8.12 ORBIT OF THE EARTH

➤ Use the Verlet method to calculate the 
orbit of the Earth around the Sun. The 
equations of motion for the position 
r=(x,y) of the planet are the same as 
those for any orbiting body. In vector 
form they are 

➤ where G=6.6738E-11, M=1.9891E30 kg. 

➤ The orbit of the Earth is not perfectly 
circular. When it is at closet point it is 
moving precisely tangentially at a 
distance of 1.4710E11 m with a velocity 
of 3.0287E4 m/s. 

➤ Write a program to calculate the orbit of 
the Earth using the Verlet method with a 
time step of h=1 hour. Make a plot of the 
orbit for several complete revolutions.

d2r

dt2
= �GM

r

r3



EXERCISE 8.12 ORBIT OF THE EARTH

➤ The gravitational potential energy of the 
Earth is -GMm/r where m = 5.9722E24 
kg is Earth’s mass. It’s kinetic energy is 
1/2mv2.  Modify your program to 
calculate both of these at each step along 
with the total energy and plot the three 
as a function of time.  You should find 
that the potential and kinetic energy vary 
visibly during the course of an orbit, but 
the total energy remains constant. 

➤ Now plot the total energy alone without 
the others and you should be able to see 
a slight variation over the course of an 
orbit. Because you are using the Verlet 
method, however, which conserves 
energy in the long term, the energy 
should always return to its starting 
value.



MODIFIED MIDPOINT METHOD
➤ The leapfrog method offers another advantage, the total error 

after summing all steps is an even function of the step size h. 

➤ Since the leapfrog method is time symmetric that means if we 
go a step forward and then back the error should be the same 
but opposite in sign. 

➤ Thus it must be an odd function, so only containing odd 
terms in h. 

➤ Now when we sum up over many steps we lose a power of h 
so the error should contain only even terms in h starting with 
h2.  The one problem with this is the first step we took which 
uses Euler’s method and thus has odd powers of h.

✏(h) = �✏(�h)

✏(h) = c3h
3 + c5h

5 + c7h
7 + ...



MODIFIED MIDPOINT METHOD
➤ To solve this problem we can use what is called Gragg’s 

method or more commonly the modified midpoint method. 

➤ Let us assume we want to solve our differential equation from 
some time t to t+H where H is not small. We use n steps of 
size h=H/n each.  We define   

➤ then 

x0 = x(t)

y1 = x0 +
1

2
hf(x0, t)

x1 = x0 + hf(y1, t+
1

2
h)

y2 = y1 + hf(x1, t+ h)

x2 = x1 + hf(y2, t+
3

2
h)



MODIFIED MIDPOINT METHOD
➤ More generally 

➤ The last two points in the solution will be yn = x(t+H - 1/2h) 
and xn=x(t+H). But we can also calculate a final value from 
yn.   

➤ We now have two ways to calculate x(t+H). We can combine 
the two and get. 

➤ If we use this equation to calculate the final term. Then odd 
terms of h that came from the first step are cancelled out.

ym+1 = ym + hf(xm, t+mh)

xm+1 = xm + hf(ym+1, t+ (m+
1

2
)h)

x(t+H) = yn +
1

2
hf(xn, t+H)

x(t+H) =
1

2
[xn + yn +

1

2
hf(xn, t+H)]



BURLISCH-STOER METHOD
➤ The modified midpoint method is rarely used alone since it 

doesn’t do anything better than the leapfrog method. 
However, combined with Richardson extrapolation it becomes 
the powerful Burlisch-Stoer method. 

➤ Let’s start with a simple ODE dx/dt = f(x,t) with a x(t) and 
we want to solve the equation to x(t+H).  

➤ First we calculate the solution using the modified midpoint 
method to t+H using one step (that is h=H). Let’s call this 
solution R1,1 (R for Richardson). 

➤ Now we perform the same calculation with half the step size 
H/2 and call that calculation R2,1.



BURLISCH-STOER METHOD
➤ Now since we’ve calculated the same thing they should be equal 

within the error  

➤ since h1 = 2h2 we get  

➤ we can use this to get a new estimate of x(t+H)  

➤ We can now use a step size of h3 = H/3 to get R3,1 and then use the 
same argument to get  

➤ our error is now of order h6 because the modified midpoint method 
only has even powers in the error.

x(t+H) = R1,1 + c1h
2
1 +O(h4

1) = R2,1 + c2h
2
2 +O(h4

2)

c1h
2
2 =

1

3
(R2,1 �R1,1)

R2,2 = R2,1 +
1

3
(R2,1 �R1,1)

R3,3 = R3,2 +
16

65
(R3,2 �R2,2)



BURLISCH-STOER METHOD
➤ We can continue this as many times as we want each time 

reducing the error by h2. As a general formula we have  

➤ Where the error goes as O(hn2m+2) 

➤ We can calculate the remaining error at each step and then 
stop decreasing our step size once we have the accuracy we 
desire.  

➤ If this reminds you of Romberg integration that is because it 
is exactly the same Richardson expansion that we use to get 
the increased accuracy.

x(t+H) = Rn,m +
Rn,m �Rn�1,m

[n/(n� 1)]2m � 1



BURLISCH-STOER METHOD
➤ In practice then the method is the following. Choose and 

accuracy δ and then divide the interval you want to solve over 
into N regions of length H. Apply the following steps to get a 
solution in each region. 

1. Set n=1 and used modified midpoint to estimate R1,1 
using just one step. 

2. Increase n by 1 and use a new modified midpoint with 
that many steps. 

3. Use the equation to calculate Rn,2…Rn,n for that step. 

4. Compare the error with the target accuracy δH, if bigger 
go back to step 2.



BURLISCH-STOER METHOD
➤ This method can provide very accurate results, even better 

than 4th order Runge-Kutta with adaptive step sizes. It is 
however more difficult to code.   

➤ One thing to note, the method will only work will if the error 
converges fairly quickly with each step.  

➤ Poorly converging solutions will take many steps and thus 
give no performance increases over Runge-Kutta. 

➤ Usually this will depend on how well behaved is the solution. 
If it is smoothly varying you should be fine. IF it has 
pathologies like discontinuities, infinities, etc. then this 
method is unlikely to give good results.



CHOOSING THE STEP SIZE 
➤ For the Burlisch-Stoer method we only want to do 8-10 steps 

in each interval H. Thus how to choose the size of H is of 
some importance. 

➤ What is usually done is one starts with some initial guess for 
H. Then one performs Burlisch-Stoer for that region, but a 
maximum refinement is chosen like 8. If the accuracy hasn't 
been reached by this level, instead of performing another step 
one halves the original size of the region H to H/2. 

➤ Repeating this each time one find a value of H for each region 
that need not be the same that gets one to the desired 
accuracy within ones maximum defined refinement criteria.



BOUNDARY VALUE PROBLEMS

➤ Shooting Method 

➤ Relaxation Method 

➤ Eigenvalue Problems



BOUNDARY VALUE PROBLEMS 
➤ So far we have discussed initial value problems, meaning solving ODEs 

where we know the initial values of the problem.  

➤ Now we turn to boundary value problems, ODEs where we don’t know 
the initial condition.  

➤ Consider for example the differential equation governing free fall. 

➤   

➤ To solve this equation we need two conditions because it is 2nd 
order. We could start with the initial position and velocity of an 
object say a ball. This would be initial value. 

➤ However, our condition could also be a position at time t1 and a 
position at time t2. Then we are asking for what initial velocity would 
result in the ball being at the required position at t2.

d2x

dt2
= �g



THE SHOOTING METHOD
➤ The shooting method is a trial-and-error method that searches 

for the correct values of the initial conditions that match a 
given set of boundary conditions. 

➤ Let’s consider the thrown ball in free fall. We start by guessing 
an initial velocity for the ball. We then see where it would be 
at t2. It is unlikely to be at the correct position, it will probably 
overshoot or undershoot the right answer. So all we need to do 
is modify our first guess and try again. 

➤ How do we do this?  There is some function x=f(v) that gives 
the balls height as a function of the initial velocity. If we want 
the ball to have a height of zero then we want to find the roots 
of the function f(v).
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THE SHOOTING METHOD
➤ So to use the shooting method we use a root finding method 

like binary search. We have a starting v and we use an ODE 
method like Runge-Kutta to solve f(v). 

➤ We then use the binary search to get a new guess for v and 
Runge-Kutta to solve f(v). 

➤ After enough iterations we find the v that gives f(v)=0 which 
is the solution we are looking for.  

➤ Any of the root finding methods and ODE methods can be 
used for this, binary search and Runge-Kutta are only 
mentioned as examples. 



RELAXATION METHOD
➤ There is another method for solving boundary value problems 

called the relaxation method. With this method one starts 
with a guess of the shape of the solution that meets the 
boundary conditions. 

➤ The function isn’t an actual solution to the equation. What 
one does is then adjust (relax) the guess of the solution until 
it gets closer and closer to an actual solution to the ODE. 

➤ This method is used more commonly for solving partial 
differential equation, so we will delay discussing it till we 
cover PDEs.



EIGENVALUE PROBLEMS
➤ A special type of boundary value problem occurs when the equations 

being solved are linear and homogenous, meaning every term in 
linear in the dependent variable.  An example of this is the time-
independent Schrondinger equation: 

➤ In this case every term in the equation is linear in ψ(x). 

➤ Let’s consider the problem of a particle in a square potential well 
with infinitely high walls. 

➤ The particle can’t be where V=∞ so this seems like a normal 
boundary value problem ψ(0)=ψ(L)=0 we could try to solve it using 
the shooting method.

� ~
2⇡

d2 

dx2
+ V (x) (x) = E (x)

V (x) = 0 for 0 < x < L

V (x) = 1 elsewhere



EIGENVALUE PROBLEMS
➤ We would start by turning it into 2 first-order equations: 

➤ For our first guess we need two values, we know ψ(0)=0 and 
we can guess some value for φ.  

➤ We want ψ(L)=0, if our first guess didn’t work (which it 
doesn’t) we would then want to vary φ. However, it turns out 
that won’t work. No value of φ will give us ψ(L)=0.  

➤ That is because the Schrondinger equation is a linear 
equation. If we double our value of φ we will get double the 
value of ψ(L). But no multiplicative factor will make ψ(L)=0. 

d 

dt
= �

d�

dt
=

2m

~2 [V (x)� E] 



x = 0 x = L



EIGENVALUE PROBLEMS 
➤ The fundamental problem in this case is that there is no 

general solution to this problem. There is no general solution 
that satisfies the boundary conditions.  

➤ For this case there are only solutions for specific values of the 
energy E, a common occurrence in quantum mechanics. Thus 
we want to solve for the eigenvalues of E where solutions 
exist. Once we have the eigenvalues we can solve for ψ(x). 

➤ One way to do this is to use something like the shooting 
method, but to vary E instead of varying the dependent 
parameters.



EIGENVALUE PROBLEM
➤ So we can think of the solution of the Schrondinger equation 

as giving us a function f(E) equal to the value of the wave 
function at x=L. We then want to find the value of E that 
makes the wave function zero at L. That is we want to find the 
roots of the function f(E). 

➤ What about the other unknown boundary condition φ=dψ/
dt? It doesn’t matter, if we have a solution that is zero at x=L, 
it is zero for any value of φ. Traditionally this factor is fixed by 
requiring the wave function to be normalized so that the 
integral over the wave function is one (like a probability). If 
this is our case we can normalize it like this which gives a 
value for φ.



SCIPY INTEGRATE 
➤ The scipy integrate subpackage contains ode solvers, in 

particular Runge-Kuta,  but also implicit solvers.  These are all 
for initial value problems. 

➤ The basic wrapper is the function is solve_ivp(fun, (ti,tf), y0, 
method = ‘RK45’). This will solve an ode of form dy/dt = 
fun(t,y), over the interval ti to tf where y(ti)=y0. fun can be a 
vector function but you must set keyword vectorized=True. 

➤ Note that our more physics relevant ode solvers (leapfrog, 
verlet) are not part of these standard libraries. We are getting 
to a level of complexity where standard solution are starting 
to become discipline specific. 


