
PARTIAL DIFFERENTIAL EQUATIONS
Ari Maller

PDES
➤ Many important equations in physics are partial differential

equations. These include the wave equation, the diffusion
equation, the Laplace and Poisson equations, Maxwell’s
equations and the Schrodinger equation. That’s a lot of
physics.

➤ While the basic numerical techniques for solving PDEs is
straight forward, solution are often computationally
challenging. So a lot of effort has gone into solving PDEs
efficiently.

➤ Like ODEs, PDEs can be boundary value or initial value
problems. Unlike ODEs, boundary value PDEs are often easier
to solve than PDE initial value problems.

BOUNDARY VALUE PDES

➤ Let’s consider Laplace’s equation as
an example of a PDE.

➤ The electric potential φ is related to
the electric field by E = -∇φ. In the
absence of any charges ∇.∇φ=0, we
get Laplace’s equation:

➤ Let’s imagine the situation pictured
to the right. An empty box with a
voltage V on the top side and 0 on
the other sides.

0 volts

V

r2� = 0

FINITE DIFFERENCE
➤ For simplicity let’s treat our box as 2D

instead of 3D. Techniques are basically the
same in 2 or 3 dimensions and it is often a
good idea to start with 2D before moving
on to 3D. In 2D Laplace’s equation
becomes:

➤ For the method of finite differences we need
to divide the space into a grid of discrete
points. Many kinds of grids are used, but
the simplest choice and appropriate for our
problem is a square grid.

0 volts

V

@2�

@x2
+

@2�

@y2
= 0

➤ We put points at the
boundary where we
know φ and in the
interior where we
want to calculate it.

FINITE DIFFERENCE
➤ Let the space between point be a. Remember when we did

numerical derivatives we could use a finite difference formula.
Applying that here we get

➤ This formula gives us an expression of the 2nd derivative in
terms of the values of 3 points on our grid. Similarly we have

➤ Thus we can write the Laplacian operator as

@2�

@y2
=

�(x, y + a) + �(x, y � a)� 2�(x, y)

a2

@2�

@x2
=

�(x+ a, y) + �(x� a, y)� 2�(x, y)

a2

@2�

@x2
+

@2�

@x2
=

�(x+ a, y) + �(x� a, y) + �(x, y + a) + �(x, y � a)� 4�(x, y)

a2

FINITE DIFFERENCE
➤ In other words we add the values of φ from the points

adjacent to x,y and then we subtract 4 times the value at x,y
and divide by a2.

➤ So Laplace’s equation at each point x,y becomes

➤ This is now a system of linear equations. It can be solved with
methods we have discussed like Gaussian elimination or LU
decomposition.

➤ It can also be solved with relaxation, which we introduced for
nonlinear equations, but happens to be a good choice here.

�(x+ a, y) + �(x� a, y) + �(x, y + a) + �(x, y � a)� 4�(x, y) = 0

JACOBI METHOD
➤ To use the relaxation method we rearrange the equation as

➤ That is the value of φ is just the average of the 4 adjacent points.
We start with our boundary condition and some initial guess for the
internal points, zero is fine.

➤ Then we use the above equation to generate new values for all the
interior points. Then we repeat and repeat until the values of φ
settle down to fixed values.

➤ This approach for solving Laplace’s equation is called the Jacobi
Method. Like any relaxation method we have to worry that the
iteration process actually converges. Situation where it doesn’t are
called numerically unstable. Luckily in this case in can be proven that
the Jacobi method is stable and always gives a solution.

�(x, y) =
1

4
[�(x+ a, y) + �(x� a, y) + �(x, y + a) + �(x, y � a)]

from numpy import empty,zeros,max

M = 100 # Grid squares on a side

V = 1.0 # Voltage at top wall

target = 1e-6 # Target accuracy

Create arrays to hold potential values

phi = zeros([M+1,M+1],float)

phi[0,:] = V

phiprime = empty([M+1,M+1],float)

Main loop

delta = 1.0

while delta>target:

 for i in range(M+1):

 for j in range(M+1):

 if i==0 or i==M or j==0 or j==M:

 phiprime[i,j] = phi[i,j]

 else:

 phiprime[i,j] = (phi[i+1,j] + phi[i-1,j] + phi[i,j+1] + phi[i,j-1])/4

 # Calculate maximum difference from old values

 delta = max(abs(phi-phiprime))

 # Swap the two arrays around

 phi,phiprime = phiprime,phi

➤ The solution one gets from
running the program is shown
in the figure.

➤ It is important to remember
that this is only a approximate
solution.

➤ Even if we require very high
accuracy from our relaxation,
the fact that the finite difference
approximation for a second
derivative is not particularly
accurate will limit the accuracy
of our calculation.

➤ One can use a higher
order approximation for
the derivative or increase
the number of grid points.

➤ The greater the number of
grid points, the longer the
calculation will take.

SHORTCOMING OF JACOBI METHOD
➤ Also, we have only determined values of the potential on the grid

points. If we want to know the value at some point off of the grid
points we will have to perform some time of interpolation like we
have discussed earlier.

➤ A more technical point, is that boundaries of the space may not
always be simple and square like in the exercise. The could be
diagonal or curved or have holes, all of which would make getting the
grid points to fall on the boundary more difficult.

➤ One can always approximate a shape by its closest values on a square
grid, but this introduces more error into the calculation.

➤ There are more complicated grids that can be used that may more
closely fall on the boundaries, but this introduces more complexity
into the equations.

EXAMPLE 9.2 THE POISSON EQUATION

➤ A more complex example is to
include charges in our area.
Now we the Poisson equation:

➤ In this case let the charges be
squares, 20cm on a side with
charge density ±1Cm-2 and 0
voltage on the boundary.

➤ Our finite difference formula
now becomes:

0 volts

20 cm

20 cm r2� = � ⇢

✏0

�(x, y) =
1

4
[�(x+ a, y) + �(x� a, y) + �(x, y + a) + �(x, y � a)] +

a2

4✏0
⇢(x, y)

EXERCISE 9.1
➤ Modify a program to solve

Poisson’s equation for the
system described in Example
9.2.

➤ Work in unites of ε0=1 and
have a target accuracy of 10-6

at each grid point.

FASTER METHODS FOR BOUNDARY VALUE PROBLEMS
➤ The Jacobi method gives good answers, but it can be very

slow. For a 100×100 grid we are essentially solving 10,000
simultaneous equations with 10,000 unknowns.

➤ If we want greater accuracy or have a larger system this can
quickly grow to a number of grid points that become
impractical on most computers.

➤ Thus methods that improve the speed compared to the Jacobi
method are very valuable. There are two we will look at:

➤ Overrelaxation

➤ Gauss-Seidel Method

OVERRELAXATION
➤ One way to try and make a relaxation approach work better is

to try and overshoot each step. If we had a point whose initial
value was 0.1 and then was evaluated to be 0.3 and whose
correct value was 0.5, our convergence would go quicker if we
set it to 0.4 instead of 0.3 on the next step.

➤ This is called overrelaxation. It works like this. Consider a set
of values φ(x,y) on the grid points that return φ’(x,y) after
one iteration. The new set can be written in terms of the old
as

➤ where Δφ(x,y) is the change in φ at each step.

�0(x, y) = �(x, y) +��(x, y)

OVERRELAXATION
➤ Now we define a set of overrelaxed values φw by

➤ Where w>0. In other words we change the value of φ by a
little more than we should by just the new evaluation. So in
our algorithm we make the new evaluation by

➤ as long as we make a good choice for w, this will converge
quicker than the normal Jacobi method. Of course if we choose
w too big then we will overshoot the solution and instead this
may take more iterations.

�w(x, y) = �(x, y) + (1 + w)��(x, y)

�w(x, y) =
1 + w

4
[�(x+ a, y) + �(x� a, y) + �(x, y + a) + �(x, y � a)]� w�(x, y)

GAUSS-SEIDEL METHOD
➤ A second trick for speeding up the Jacobi method is to use the

new values φ’ instead of φ when possible.

➤ This has the advantage that we think φ’ is more accurate then φ,
so we should converge quicker.

➤ But usually more importantly, this means we never need the old
values of φ’, which means we can just use one array to store the
values.

➤ We can combine Gauss-Seidel with overrelaxation and this is
what is usually done, but for an unexpected reason.

➤ It turns out the simple Jacobi overrelaxation does not work, the
problem becomes numerically unstable. Gauss-Stidel with
overrelaxtion is stable. So it is the way to go.

GAUSS-SEIDEL METHOD
➤ The final issue we have is how to choose w. There is no best

answer or method for finding a best answer.

➤ The best choice depends both on the specific equations being
solved and the shape of the grid.

➤ w is usually determined by trial and error. It has been proven
that w<1 in generally stable but w>1 is unstable.

➤ For the Jacobi problem on a square grid that we have looked
at as an example it turns out the best value of w is around 0.9.

➤ This can give a factor of 10 speed up, which is considerable.

INITIAL VALUE PDES
➤ Now let’s turn to initial value problems. In this case we are

told the starting condition in our problem and our goal is to
solve it at some later time.

➤ As an example let’s consider the diffusion equation. We can
consider just one spatial dimension for simplicity.

➤ Where D is a diffusion coefficient. When used to study heat
flow this equation can also be called the heat equation.

➤ The variable φ(x,t) depends on both x and t. Like the Laplace
equation we just solved it a partial differential equation with
two independent variables.

@�

@t
= D

@2�

@x2

INITIAL VALUE PDES

➤ One could imagine solving this problem in the same way, but
making a 2D space-time grid and then solving for the values
on the grid.

➤ However, this approach will not work. Unlike the boundary
value problem we don’t know the value of the points at a later
time to use as a constraint.

➤ We have to use a different technique. The first one we will
look at is the forward-time centered space method for solving
partial differential equations, called FTCS for short.

FTCS METHOD

➤ We start by dividing the spatial dimensions into a grid of
points. In this case with just one spatial dimension just a line
of points. Let the spacing between point be a. Then the
derivative can be written as:

➤ and there for we can write the diffusion equation as

➤ If we think of the values of φ at different points as separate
variables then the above equation is just simultaneous ordinary
differential equations. These can be solved by the methods we
have discussed last section.

@2�

@x2
=

�(x+ a, t) + �(x� a, t)� 2�(x, t)

a2

d�

dt
=

D

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

FTCS METHOD
➤ The catch is that there can be thousand or millions of

equations depending on the spacing in our grid and the
dimensionality of the problem.

➤ The most common method to use is Euler’s method. While
this might seem strange since we spent so much time on 4th
order Runge-Kutta, the reason is because our equation is
already an approximation. Solving it with more accuracy then
it actually has doesn’t make a lot of sense.

➤ The approximation of the second derivative has a second
order error associated with it. Thus using anything higher
than a first order scheme to solve it is probably unnecessary.

FTCS METHOD

➤ Applying Euler’s method gives

➤ So we start our gird using our initial condition to get all
values of φ(x,t0). We then use the above equation to get
φ(x,t0+h) which for each point depends on the value of the
points above and below our point in question.

➤ Repeating in steps of h we can propagate our solution out to
the value of t we desire. This is the same way we solved
ODEs, but now we are also using the spatial information
which accounts for the other partial derivative.

�(x, t+ h) = �(x, t) + h
D

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

EXAMPLE 9.3 THE HEAT EQUATION
➤ As an example lets consider a container made of 1cm think

stainless steel initially at a uniform temperature of 20C. The
container is placed in a bath of cold water at 0C and filled
with hot water at 50C.

➤ Our goal is to calculate the temperature profile of the steel as
a function of distance x from the hot side to the cold side, as a
function of time. For simplicity lets consider the container
very large so we can treat this as a 1D problem.

➤ Thermal conduction is governed by the diffusion equation,
the equation we just developed a numerical technique for
solving. The thermal diffusivity of steel is D = 4.25E-6 m2s-1.

EXAMPLE PROGRAM HEAT.PY
Constants

L = 0.01 # Thickness of steel in meters

D = 4.25e-6 # Thermal diffusivity

N = 100 # Number of divisions in grid

a = L/N # Grid spacing

h = 1e-4 # Time-step

epsilon = h/1000

Tlo = 0.0 # Low temperature in Celcius

Tmid = 20.0 # Intermediate temperature in Celcius

Thi = 50.0 # Hi temperature in Celcius

t1 = 0.01

t2 = 0.1

t3 = 0.4

t4 = 1.0

t5 = 10.0

tend = t5 + epsilon

Create arrays

T = empty(N+1,float)

T[0] = Thi

T[N] = Tlo

T[1:N] = Tmid

EXAMPLE PROGRAM HEAT.PY
Main loop

t = 0.0

c = h*D/(a*a)

while t<tend:

 # Calculate the new values of T

 for i in range(1,N):

 Tp[i] = T[i] + c*(T[i+1]+T[i-1]-2*T[i])

 T,Tp = Tp,T

 t += h

 # Make plots at the given times

 if abs(t-t1)<epsilon:

 plot(T)

 if abs(t-t2)<epsilon:

 plot(T)

 if abs(t-t3)<epsilon:

 plot(T)

 if abs(t-t4)<epsilon:

 plot(T)

 if abs(t-t5)<epsilon:

 plot(T)

➤ The output from that
program is this graph.

➤ We see how the temperature
profile evolves with time.

➤ At first the solution is close
to our starting situation,
most of the points have
value Tmid.

➤ But by the last time plotted
we have a linear
temperature relationship.

EXERCISE 9.4
➤ A classic example of a diffusion problem with a

time varying boundary condition is the diffusion
of heat in the crust of the Earth, as surface
temperature varies with the seasons. Suppose the
mean daily temperature of a particular point on
the surface varies as

➤ where τ=365days, A=10C and B=12C. At a depth
of 20m below the surface almost all annual
temperature variation is ironed out and the
temperature is, to a good approximation, a
constant 11C. We’ll take the thermal diffusivity
of the Earth’s crust as D=0.1 m2 day-1.

➤ Write a program to calculate the temperature
profile of the crust as a function of depth up to
20m and time up to 20 years. Start with a
temperature of 10C for all x except the surface at
20m. Run the code for 9 years to allow it to settle
down, then plot what you get in year 10 every 3
months.

T0(t) = A+B sin
2⇡t

⌧

NUMERICAL STABILITY
➤ The FTCS method works well for the diffusion equation, but

there are other equations where it doesn’t work as well.

➤ The wave equation is an important equation in physics, but
one where FTCS performs badly. The wave equation can be
written as

➤ using our finite difference method would give

➤ Now we can solve this by using our trick of turning a second
order derivative into two first order derivatives

or

d�

dt
= (x, t)

d2�

dt2
=

v2

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

d

dt
=

v2

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

@2�

@t2
� v2

@2�

@x2
= 0 @2�

@t2
= v2

@2�

@x2

NUMERICAL STABILITY

➤ Then applying Euler’s method we get the FTCS equations

➤ Now we can just iterate these equation forward in time

 (x, t+ h) = (x, t) + h
v2

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

�(x, t+ h) = �(x, t) + h (x, t)

Solution for a vibrating string. Our
solution starts out ok, but then evolves
to something that doesn’t seem physical
at all.

VON NEUMANN STABILITY ANALYSIS
➤ What happened? Our solution seems to have become

numerically unstable. If we continue to let this code run the
errors will exceed the overflow value of the machine.

➤ Let’s go back to our diffusion equation and check its stability to
understand what is happening. Our FTCS equation is

➤ An analysis due to von Neumann is to express φ as a Fourier
series.

➤ We can now apply the FTCS equation to the Fourier series. Since
the equation is linear we can advance each mode separately.

�(x, t+ h) = �(x, t) + h
D

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

�(x, t) =
X

k

ck(t)e
ikx

VON NEUMANN STABILITY ANALYSIS
➤ Plugging a single k value in gives

➤ We see that each coefficient changes just based on k, not x or
t. So we can write the coefficient at the next time step as

➤ Now we can see how a mode could be come unstable. If the
factor in brackets is greater than 1 then that mode will grow
each time step, becoming exponentially larger.

�k(x, t+ h) = ck(t)e
ikx + h

D

a2
ck(t)[e

ik(x+a) + eik(x�a) � 2eikx]

=
⇥
1 + h

D

a2
(eika + e�ika � 2)

⇤
ck(t)e

ikx

=
⇥
1� h

4D

a2
sin2

1

2
ka

⇤
ck(t)e

ikx

ck(t+ h) =
⇥
1� h

4D

a2
sin2

1

2
ka

⇤
ck(t)

VON NEUMANN STABILITY ANALYSIS

➤ Luckily the term in brackets is always less than 1. One minus a
positive number is always less than 1. However if the sin term
becomes greater than 2 then we have the same problem.

➤ In this case the solution is stable as long as

➤ Note this gives us a condition on our time step relative to spacing of
our grid. If we don’t choose steps small enough errors can grow
exponentially and give completely unphysical answers.

➤ If h is small enough then all k values will decay except for k=0,
which is what we expect for a diffusion equation, we should reach a
solution that is uniform in space, without oscillations.

h  a2

2D

ck(t+ h) =
⇥
1� h

4D

a2
sin2

1

2
ka

⇤
ck(t)

NUMERICAL STABILITY
➤ Now let us perform a similar analysis on the wave equation.

Since we have two variables, φ and ψ, we create Fourier series for
both of them with coefficients cφ and cψ. From the same line of
arguments we get

➤ we can express this as a vector c(t+h) = Ac(t) where

➤ so again each time step the values of c change by an operation
that doesn’t depend on x or t.

c (t+ h) = c (t)� hc�(t)
4v2

a2
sin2

1

2
ka

c�(t+ h) = c�(t)� hc (t)

A =


1 h

�h 4v2

a2 sin2 1
2ka 1

�

NUMERICAL STABILITY
➤ Now let us express A in terms of its eigenvectors, which we will call v1

and v2. Then there exist some values of α1 and α2 that give c=

α1v1+ α2v2. So we can write

➤ where λ are the corresponding eigenvalues for A. If either of them is
greater than unity, they will grow and our result will be numerically
unstable. Solving for the eigenvalue we get

➤ which we can see are always greater than 1. That is no matter what
choice we make for h the numerical errors will grow exponentially.
Thus one can only solve the wave equation with FTCS for short
periods of time, before the errors grow large.

c(t+ h) = A(↵1v1 + ↵2v2) = ↵1�1v1 + ↵2�2v2

c(t+mh) = ↵1�
m
1 v1 + ↵2�

m
2 v2

|�| =
r
1 +

4h2v2

a2
sin2

1

2
a2

IMPLICIT METHOD
➤ Let us still consider the wave equation, but now let us

substitute -h for h, that is we will take a step back instead of a
step forward.

➤ Let us now make a second substitution, let us change t to
t+h. Then rearranging the terms we get

➤ we now again have equations for φ and ψ at t+h, but they do
not explicitly give us the values we have to solve the
equations to find the values. Thus these equation are implicit.

 (x, t� h) = (x, t)� h
v2

a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

�(x, t� h) = �(x, t)� h (x, t)

�(x, t+ h)� h (x, t+ h) = �(x, t)

 (x, t+ h)� h
v2

a2
[�(x+ a, t+ h) + �(x� a, t+ h)� 2�(x, t+ h)] = (x, t)

IMPLICIT METHOD
➤ Now we can try repeating the Neumann stability analysis.

Now we get Bc(t+h) = c(t). B-1 is then

➤ The eigenvalues in this case have the magnitude of

➤ which we can see are always less than unity. The implicit
method for the wave equation is unconditionally stable.

➤ However, we still have a problem. Our Fourier analysis tells us
that each k value will decay away exponentially, which is not
very wave like behavior. Our solution is stable but unphysical.

B�1 =
1

1 + h2r2


1 h

�hr2 1

�
where r = (2v/a) sin

1

2
ka

|�| = 1p
1 + h2r2

CRANK-NICOLSON METHOD
➤ The explicit FTCS method and the implicit method either

grow or decay too much. What we want is a method
somewhere in between.

➤ Such a method is called the Crank-Nicolson method. In this
method we take the average of the two approaches.

 (x, t+ h)� h
v2

2a2
[�(x+ a, t+ h) + �(x� a, t+ h)� 2�(x, t+ h)]

= (x, t) + h
v2

2a2
[�(x+ a, t) + �(x� a, t)� 2�(x, t)]

�(x, t+ h)� 1

2
h (x, t+ h) = �(x, t) +

1

2
h (x, t)

CRANK-NICOLSON METHOD
➤ In this case the matrix for stability analysis is just B-1A whose

eigenvalues are

➤ The eigenvalues for this combination are exactly one. The Fourier
coefficients neither grow or decay. This method is exactly on the
boundary between the FTCS and implicit method. Waves won’t grow
or decay but propagate, exactly what we expect from the wave
equation.

➤ While the Crank-Nicolson method is more complicated to write
down, it is still relatively fast to solve. Each grid point still only
depends on the values on each side, so as a matrix they are
tridiagonal which we saw previously can be solved quickly by
methods such as Gaussian elimination.

|�| =
p
(1� h2r2 + 2ihr)(1� h2r2 � 2ihr)

1 + h2r2
= 1

SPECTRAL METHOD
➤ The finite difference method is not the only approach to

solving partial differential equations. There are many others
that are widely used, like the finite element method. One
method that can be extremely useful in certain situations is
the spectral method or Fourier transform method.

➤ Let’s consider again the wave equation for a wave on a fixed
string of length L fixed at both ends so that φ(0)=φ(L)=0.
Let’s guess the solution can be expressed in the form

➤ This automatically satisfies the boundary conditions and the
wave equation as long as

�k(x, t) = sin
⇡kx

L
ei!t

! =
⇡vk

L

SPECTRAL METHOD
➤ Now let’s divide the string into N equal intervals bounded by

N+1 grid points.

➤ We have our guessed solution at any of these points by simply
replacing x by xn. We can state a general solution by
combining these solutions in a linear combination.

➤ at t=0 the exponential vanishes. We can divide the
coefficients into real and imaginary parts, bk = αk+iηk.

xn =
n

N
L

�(xn, t) =
1

N

N�1X

k=1

bk sin
�⇡kn

N

�
exp

�
i
⇡vkt

L

�

�(xn, 0) =
1

N

N�1X

k=1

↵k sin
�⇡kn

N

�

SPECTRAL METHOD
➤ which is just a Fourier series with coefficients αk. Similarly the

time derivative of the real part of the solution is

➤ which is also just a Fourier series with coefficients kηk. So there is
a choice of kηk that would match any initial condition on the
derivative.

➤ The spectral method allows us to transform our PDE into a Fourier
transform, which we know how to solve with FFT. The spectral
method doesn’t require time steps, we solve the function φ(x,t) at
all t. Thus even though it may take more computation than one
time step using FTCS it will be much quicker than 106 time steps.

@�

@t
= �⇡v

L

1

N

N�1X

k=1

k⌘k sin
�⇡kn

N

�

SPECTRAL METHOD
➤ The spectral method has some nice features, but also some

limitations.

➤ It only works for problems with a simply shaped boundary
condition. There is no straightforward way to adapt the
method for more strangely shaped boundary conditions.

➤ Also, it is only applicable to linear differential equations
because for nonlinear equations we can not add together the
various terms in the Fourier series.

➤ The finite difference method has neither of these restrictions
and such is more generally applicable, though one must check
to see if it is numerically stable.

