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OPTIMIZATION
➤ One of the major uses of computers is for finding optimum 

solutions to problems. That can range from our traveling 
salesman, to designing airplane wings or recognizing speech. 

➤ Optimization is usually the same as finding the global maximum 
or minimum of a function. If our problem is one dimensional then 
the methods we discussed earlier can be used.  Unfortunately, 
many problems of interest are of higher dimensionality.  

➤ While optimization can be about almost anything, we will focus 
on parameter estimation, that is finding the ‘best’ choice of 
parameters for a model given some data.  While the methods used 
to solve this type of problem are the same as any other 
optimization problem, parameter estimation is something that 
occurs in all branches of physics (science).



METHODS
➤ Linear Least Squares 

➤ Nonlinear Least Squares  

➤ Amoeba 

➤ Gradient Descent  

➤ MCMC 

➤ Simulated Annealing 

➤ Genetic Algorithm



FITTING A LINE TO DATA 
➤ Let’s start with one of the most common practices in the 

sciences. Fitting a line to data.  There is a rather standard 
approach to this, but we will explore it in detail to understand 
exactly what one is doing and enable discussion of the issues 
associated with that. 

➤ First off, it is often unclear that fitting a line to data is a good 
idea.  If one has a theoretical model that suggest the y-values 
of the data should depend linearly on the x-values, then it is a 
sensible thing to do. But in practice people often fit a line 
based not on a theory, but simply because a line represents a 
simple function.



LEAST-SQUARE FITTING
➤ If you have a set of two-dimensional points (x,y) that depart 

from a perfect, narrow, straight line y=mx+b only by the 
addition of Gaussian-distributed noise of known amplitudes 
in the y direction only, then the maximum-likelihood line for 
the points has a slope m and intercept b that can be obtained 
by linear matrix-algebra operation known as ‘weighted linear 
least-square fitting’. 

➤ Let us consider this situation first and then discuss its 
validity.  We want to find the function f(x) = mx+b. We have 
some number N of sample points for x and y and errors. We 
can construct the following matrices, Y, A, C from those 
points and errors



LEAST-SQUARE FITTING

➤ The matrix C can have off diagonal elements in which case it 
would be a covariance matrix. 

➤ The best fit values for m and b are the components of the vector X  

➤ We can see where this comes from by starting with Y=AX, but 
this is overdetermined if N>2. So we weigh the points by the 
inverse covariance matrix and then multiple by AT to reduce the 
dimensionality.
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LEAST-SQUARE FITTING
➤ This procedure is not arbitrary. It is minimizing an objective 

function χ2 (chi-squared) which is the total squared error 
normalized by the errors. 

➤ The previous equation simply solves for the minimal value of 
this function.  But now we get to the question, in what way is  
minimizing the ‘best fit’ line? 

➤ In order to address this we will need to create a generative 
model of our data. That is a parameterized model that can 
produce the data in question in a statistical sense.
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OBJECTIVE FUNCTION
➤ Our generative model shall be what we already described.  A 

linear relationship between f(x)=mx+b plus Gaussian 
distributed errors. Then the probability of getting a value yi is 

➤ Thus the likelihood, ℒ, of getting the y-values we have 
assuming the points are independent is  

➤ taking the log and letting K equal the value outside the sum
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EXERCISE 12.1 
➤ Use the generative model to 

generate some data and plot it. 
Let the function be a line f(x) 
= mx + b, with m=1 and b=0. 
Let the standard deviation of 
the y data points be σyi = 0.2. 
Generate 50 random points 
between 0 and 1 and plot them. 

➤ Generative models are a very 
powerful computational tool. 
They allow you to test your 
analysis on data which by 
construction you know 
everything about.



NUMPY POLYFIT
➤ The python numpy package includes a function for 

performing linear least square fitting called polyfit.   

➤ Note that while we have been focusing on fitting a line, higher 
order polynomials like f(x) = qx2 + mx +b are still linear in 
the parameters and thus can be solved with just linear 
algebra. 

➤ The polyfit function takes x and y values, the degree of the 
polynomial and weights. It returns the best fit and errors. 

params, error_matrix=polyfit(x, y, 2, w=1/y_sigma, cov=True) 



UNCERTAINTIES IN THE BEST FIT PARAMETERS
➤ Let’s look at the uncertainties in our best fit parameters. The 

standard output from linear-least squares is just a covariance 
matrix given by  

➤ Often people only quote the diagonal element, though it is 
very likely that the off-diagonal values are large (i.e. the fit 
parameter are likely to be highly correlated). 

➤ These uncertainties will only be correct if our generative 
model holds exactly. Since this is rarely the case it is useful to 
use uncertainty estimates derived from the data by either the 
bootstrapping or jackknife techniques.
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EXERCISE 12.2
➤ Use polyfit to fit your 

generated data. Determine the 
difference between your fit 
parameters and their true 
values. Compare this to the 
diagonal elements of the error 
matrix (note the matrix is σ2.) 

➤ Now loop over this 30 times, 
generating new data and then 
fitting it. Make a plot of the 
distribution of differences 
between the fit parameters 
and their true values (2 
distributions).



BOOTSTRAPING RESAMPLING
➤ Bootstraping is drawing N random data points from the N 

data points that you have, with replacement. That is some 
data points get dropped and some get sampled 2 or more 
times.  Each j sample one creates this way you then use to 
estimate your parameters, mj and bj.  With M trails an 
estimate on the variance in your determination of m is then  

➤ The variance of b and the covariance can be calculated in a 
similar way (i.e., sum over (bj - b)2 and (mj-m)(bj-b)).
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EXERCISE 12.3
➤ Now create bootstrap 

resamples of your data and 
use polyfit to fit a line to each 
resampling.  

➤ Plot the distribution of your fit 
parameters and measure their 
standard deviation. How do 
they compare to what you 
found in Ex. 12.2?



JACKKNIFE RESAMPLING
➤ In jackknife resampling one removes the one data point and 

then recalculates the estimated parameters. This is done for 
each data point in the sample, so for N data points you get N 
resamples data sets. The variance is then given by 

➤ with the obvious extension for b and the off-diagonal 
elements. 

➤ Note that both jackknife and bootstrapping will not give good 
results if the model (here a linear function) is not a good fit to 
the data.  
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EXERCISE 12.3
➤ Now use jackknife resampling 

to estimate the variance in 
your data set. Remove one of 
the data points and run 
polyfit. Numpy delete may be 
useful here. Note that the 
formula for the variance is 
different when using the 
jackknife and bootstrapping 
methods. 

➤ Plot the distribution of your fit 
parameters in this case and 
compare to the bootstrapping 
method.



NONGAUSSIAN ERRORS
➤ What if our errors are not Gaussian?  The best approach is to include 

the non-Gaussianity in our generative model.  For example let’s 
suppose our errors are the sum or mixture of k Gaussian 
distributions. This is a good approach because most reasonable error 
distributions can be approximated as the sum of Gaussian 
distributions. In this case our probability of getting the value yi 
becomes 

➤ where aij are the amplitudes and Δyij are offsets of the means of the 
Gaussians. With this equation we can then construct a likelihood. 
Minimizing it is much harder, but still leads to the correct ‘best fit’ 
parameters.
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GOODNESS OF FIT
➤ If the assumption of our simplest generative model are correct 

(independent data points, Gaussian errors, linear relationship 
and no error in the x values), then the expectation is that the 
data points will contribute a mean square error comparable to 
σ2yi. The distribution of χ2 can be written analytically and is 
called the chi-square distribution. The expected value of χ2 is 

➤ In practice values of χ2 smaller and larger than this will occur. 
In both cases they suggest the model is incorrect, either 
because it is the wrong function or because the errors are 
under or over estimated. One common problem is errors with 
covariance being treated as independent.
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GOODNESS OF FIT
➤ Correlated measurements are not uncommon and can be 

accounted for if χ2 is defined in terms of a covariance matrix 

➤ wij are the elements of the inverse covariance matrix C-1. 

➤ So far we have only considered uncertainties in the y-variable, 
but most real world data has uncertainties in the x-variables 
too. If we have x and y errors and possible covariance we can 
define a matrix 
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2D UNCERTAINTIES
➤ In this case if the distribution of the errors are Gaussian we 

can generalize our expression for the probability of getting a 
value yi to a point xi,yi 

➤ where Z=[x,y] and Zi = [xi,yi].  In order to fit a line to this 
data we need to construct a likelihood from the above 
probability.  However, given a data point, we don’t know what 
x,y it is displaced from. Errors that move points along the line 
appear like points with no errors. 

➤ One way to treat this is to look at how far the data points are 
from the line measured as a perpendicular distance.
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2D UNCERTAINTIES
➤ That is we define a unit vector perpendicular to the slope of 

our line 

➤ where θ = arctan(m).  We can define the orthogonal 
displacement Δi of each point by  

➤ each points covariance matrix can be projected into a variance 

➤ and then the log likelihood can be written down as   
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EXERCISE 12.4
➤ Now generate new data, but 

adding Gaussian x error of σxi 
= 0.2. Find the best 
parameters and their errors in 
this case. 

➤ Do this 30 times and look at 
the distribution of your best 
fit parameters, how does this 
compare to what you got in 
Ex. 12.2



NONLINEAR LEAST-SQUARES
➤ So far we have focussed on fitting a line to data, but what if the 

underlying relationship between x and y is not linear, but some 
other function f(x). 

➤ As far as the analysis goes, almost nothing changes.  χ2 can be 
expressed in a similar manner, the only difference is that we can no 
longer solve the problem with linear algebra. If we still assume the 
error are Gaussian this gives us nonlinear least squares. Our 
objective function is still the sum of the weighted distances of our 
points from our model function, the only difference is the numerical 
technique we use to find the minimum.  

➤ However, if the objective function is not χ2, then we can still 
maximize a likelihood, but we can’t do it with least-squares. We will 
have to use some other method of optimization. 



GAUSS-NEWTON ALGORITHM
➤ The Gauss-Newton algorithm is an extension of Newton’s 

method for finding the minimum of a function. Remember 
Newton’s method was to use the derivative to step our guess 
towards the minimum  

➤ The Gauss-Newton applied to N variables and N equations 
minimizes  

➤ by making steps  

➤ where J is the Jacobian of the functions r, 
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GRADIENT DESCENT 
➤ Another first-order method for finding minimizes of many 

variable functions is called gradient descent or steepest descent. 

➤ In this method we use the gradient of our function to 
estimate the next step. So we have  

➤ Notice that unlike Gauss-Newton this work on any function, 
not just a function which is the sum of squares of functions.

~xn+1 = ~xn � hrF (~xn)



GRADIENT DESCENT

➤ Gradient descent looks 
like this. Each step you 
calculate the gradient 
and then advance in that 
direction. 

➤ Note that both gradient 
descent and Gauss-
Newton will only give 
you the local minimum. 
The minimum you get 
will depend entirely on 
your starting guess.



LEVENBERG–MARQUARDT ALGORITHM
➤ The standard algorithm for solving nonlinear least square 

problems is the Levenberg-Marquardt algorithm.  

➤ This algorithm combines the Gauss-Newton method and the 
gradient descent method by introducing a damping parameter.  

➤ If the value of the parameter is adjusted for each iteration 
(like adaptive step sizes). If the parameter is small the 
method becomes Gauss-Newton, if it is big the algorithm is 
like gradient descent. 

➤ Thus Levenberg-Marquardt uses both algorithms trying to 
take advantage of each strengths. It thus performs very well. 
Note it is only applicable to sum of squares problems. 



SCIPY CURVE_FIT
➤ The python scipy package subpackage optimize contains the 

function curve_fit that performs nonlinear least squares curve 
fitting using the Levenberg–Marquardt algorithm (though 
there are other options).   The function call looks like  

params, p_covariance=curve_fit(function, x, y,     
p0=starting_guess, sigma=1/sigma or 1/covariance) 

➤ The most important thing about using this routine is that you 
must supply your own function that takes x and the params 
and returns the y values. Something like  

def my_func(x, m ,b) 

     return m*x+b



EXERCISE 12.5
➤ Now let us generate non linear 

data. Take f(x) = sin(x/2π) and 
generate 50 data points with error 
σyi = 0.2 for x in the range [0,1] 

➤ Fit a line to the data using polyfit. 
Then fit a quadratic to the data. 

➤ Then using curve_fit to fit a sin 
function to the data. 

➤ One of the weaknesses of these 
functions is they do not return a 
χ2 value for your fit. However, it 
is easy enough to calculate it once 
we have the best fit parameters. 
Determine χ2 for each of your 
three fits.



SUMMARY
➤ Least-square fitting is often done to fit a function to data.  This 

is justified if the errors on the data are Gaussian which then 
implies that log ℒ  = χ2. In that case, and in that case only 
minimizing chi-squared is the same as finding the maximum of 
the likelihood.  

➤ If the errors are not Gaussian, and you can model them, then 
the correct way to fit data is to maximize the likelihood as 
given by whatever model you have for the likelihood. In this 
case the minimization is not least-squares and the algorithms 
we have discusses so far are not appropriate.  

➤ Instead one must use general optimization algorithms that 
make no assumption about the functional form over which you 
are minimizing.



GENERAL MINIMIZATION
➤ There are many algorithms that can be used to minimize 

arbitrary functions. The most important differences are 
whether they make use of derivatives and if they do only first 
or also second derivatives and how much effort they spend 
looking for a global minimum instead of a local minimum.  

➤ Much like we saw when we first learned about numeric 
integration, there is generally a trade off between higher order 
methods that can converge much faster, but are more likely to 
have problems with pathological functions. 

➤ There is also a trade off between how hard one wants to search 
for a global minimum and how much more time that search 
will take.



SCIPY OPTIMIZE 
➤ The scipy sub-package optimize contains implementations of most of the 

commonly used minimization algorithms.   

➤ These functions can all be called with a single interface 
scipy.optimize.minimize. The function call is something like 

OptimizeResult=minimize(function, guess, method=None) 

➤ where function is the objective function you want to minimize, guess is 
your starting guess and method can be set to different choices if you want 
to use that algorithm. 

➤ This function returns OptimizeResult which is a class that has data and 
methods associated with it. So for example OptimizeResult.x is the 
minimum values you are looking for while OptimizeResults.nit is the 
number of iterations performed before reaching that result. 



POWELL’S METHOD 
➤ Powell’s method or more correctly Powell's conjugate direction 

method is a straightforward extension of our 1D methods for 
finding local minimum in higher dimensional spaces.   

➤ It this method you simply use bi-section to find the minimum 
in one of the dimensions. Then you do the same thing 
stepping through the rest of the N-1 dimensions. Then you 
keep repeating until going through all the N dimensions 
improves your result by less than a set tolerance. 

➤ This method requires no derivatives and finds a local 
minimum. Modifications to this method can use other means 
of finding the minimum in one dimension.



CONJUGATE GRADIENT METHOD
➤ Powell’s method is a conjugate method it that each step since 

you performing your minimization in a direction orthogonal to 
the previous step. 

➤ Conjugate methods generalize this by not requiring that you use 
the basis set of your function (x,y,z…) but finding a new basis 
set of vectors that performs the minimization much quicker.  

➤ Conjugate gradient methods combine this with the gradient 
descent method so that you take gradients, but with respect to 
the optimized basis vectors.  

➤ It thus in general preforms better than Powell’s method or 
gradient descent, but it requires first derivatives and only finds 
the local minimum.
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➤ An illustration showing the 
advantage of the conjugate 
method. 

➤ The green shows normal 
gradient descent. The line 
tends to wiggle back and 
forth as it goes to the 
minimum because that is 
the direction of x and y. 

➤ The conjugate method 
reorients the vector so that 
it goes straight to the 
minimum.



BFGS
➤ The Broyden–Fletcher–Goldfarb–Shanno algorithm is one of the 

most popular nonlinear minimization algorithms and the default 
when using scipy minimize. 

➤ This is a quasi-Newton method which makes it analogous to the 
secant method but in higher dimensional spaces. Newton’s method 
requires the first and second derivatives of the function. The secant 
method approximates the second derivative numerically.  

➤ In higher dimensions Newton’s method for root finding is  

➤ where the first derivative has been replaced by the inverse of the 
Jacobian matrix.

xn+1 = xn � [Jg(xn)]
�1g(xn)



BFGS
➤ Minimization is just root finding on the gradient of the function 

so  

➤ The Jacobian of the gradient is the Hessian matrix, the matrix of 
second derivatives. The BFGS method just like the secant method 
approximates this from the first derivatives. 

➤ Thus is basically works like the secant method with the added 
complication that you have matrices and not just a single value. 

➤ Similar to how Newton’s method could find roots much faster 
than methods that did not use the derivatives the BFGS method 
will find a minimum in a small number of steps if the function is 
well behaved.

xn+1 = xn � [Jg(xn)]
�1rg(xn)



AMEOBA
➤ The Nelder-Mead method or downhill simplex method or 

amoeba method is a commonly applied numerical method for 
finding the minimum of an objective function in 
multidimensional space.  

➤ Its greatest strength is that it doesn’t require derivatives, 
unlike many other methods.   

➤ The method makes use of the concept of a simplex which is a 
polytope of n+1 vertices in n dimensions.  That is a shape 
that has one more vertex than the dimension of a space. So a 
triangle in 2D, a tetrahedron in 3D, etc.



AMEOBA 
➤ Let’s consider 2D for simplicity. We start with a triangle and 

one evaluates the function at the vertices. 

➤ Then one performs a reflection, mirroring the triangle and 
evaluating the function at the new point. If the new value is 
lower then that becomes are new triangle. Then one rotates 
thought the points this way. 

➤ This causes the polytope to crawl towards the minimum, 
hence the amoeba name.   

➤ The polytope is also shrunk are expanded, this is like adaptive 
step sizes, so that you move a great distance when far from 
the minimum, but become more refined as you get closer.





GLOBAL SEARCH
➤ All the methods we have discussed find local minima. The 

easiest way to extend them to global searches is simply to start 
the process in many different locations. 

➤ That is to perform a global search you should never start from 
only one location.  You can use a grid of initial guesses or one 
can choose initial guesses randomly. 

➤ One can also use methods like simulated annealing, where you 
push out of local minimum based on some criteria.  When you 
are in a true global minima you will keep coming back to it 
regardless of how you are ejected from it. 

➤ Another approach is to map the space to find the minimum. 
This has the advantage that you also get a map of the space.



GRID SEARCH
➤ One of the safest ways to look for a global minimum and also 

very inefficient is to simply evaluate the function on a grid. 
The minimum is then the lowest value on your grid. 

➤ One can keep refining the grid until the minima changes by 
less than some value. This is guaranteed to give you a global 
minimum as long as the function doesn’t vary wildly on scales 
less than your grid spacing.  

➤ While this method is very inefficient it does have the 
advantage the you not only find the minimum but also map 
the space which may be useful if you are for example going to 
draw contour lines.



MCMC
➤ However, as we have already learned, a more efficient way to 

sample a space is to use a Monte-Carlo Markov-Chain. This 
way you sample the space, but choose the points 
proportionally to how informative they are. MCMC maps the 
region of interest with many fewer function calls then a 
uniform grid. 

➤ MCMC is a very powerful method for sampling likelihoods 
because once the chain has adjusted the density of the 
sampling is the same as the likelihood of those parameters.  

➤ So if you want to know the 90% confidence levels for you 
parameters, it is just the 90% of your Markov-Chain with the 
lowest values.



SIMULATED ANNEALING
➤ Simulated annealing uses something like the metropolis 

algorithm in looking for a global minimum. 

➤ The important difference is that the ‘temperature’ - the 
probability that you will accept a less optimized solution - 
does not stay fixed, but gradually decreases as the search 
continues. 

➤ Having a higher temperature in the beginning hopefully keeps 
one from finding local minima, but then cooling later on 
allows one to find a precise minima. 

➤ The ‘cooling function’ determines the rate at which the search 
becomes more localized. 



GENETIC OR EVOLUTIONARY ALGORITHMS
➤ The genetic algorithm is one type of evolutionary algorithm that tries 

to approach problems like living systems do. 

➤ The genetic algorithm starts with a population, a group of solutions 
to the problem you are trying to solve.  

➤ These solutions can be characterized by parameters like living 
creatures are characterized by their genes.  

➤ In the genetic algorithm one judges the solutions by some fitness 
criteria and then only lets some number of fittest solutions survive.  

➤ Then these solutions have their genes exchanged so form a new 
population and the process is repeated.  

➤ In this way one evolves the parameters to get the optimized (fittest) 
solution. 


